Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào năm 2020 2021 môn Toán trường THPT Chu Văn An Hà Nội

Nội dung Đề thi thử vào năm 2020 2021 môn Toán trường THPT Chu Văn An Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào năm 2020-2021 môn Toán trường THPT Chu Văn An Hà Nội Đề thi thử vào năm 2020-2021 môn Toán trường THPT Chu Văn An Hà Nội Vào Chủ Nhật ngày 07 tháng 06 năm 2020, trường THPT Chu Văn An ở thành phố Hà Nội đã tổ chức kỳ thi thử vào lớp 10 THPT năm học 2020-2021 môn Toán. Bài thi này gồm một trang với 10 bài toán dạng tự luận, mỗi bài tương ứng với một điểm. Thời gian làm bài thi là 90 phút. Một trong những bài toán trong đề thi là: Miếng kim loại thứ nhất nặng 880g, miếng kim loại thứ hai nặng 858g. Thể tích của miếng thứ nhất nhỏ hơn thể tích của miếng thứ hai là 10cm3, nhưng khối lượng riêng của miếng thứ nhất lớn hơn khối lượng riêng của miếng thứ hai là 1g/cm3. Yêu cầu tìm khối lượng riêng của mỗi miếng kim loại. Bài toán khác yêu cầu tính diện tích hình thang cân có đường chéo vuông góc với cạnh bên, với đáy nhỏ dài 14cm và đáy lớn dài 50cm. Ngoài ra, học sinh được yêu cầu sắp xếp các giá trị lượng giác (sin 20°, cos 20°, sin 55°, cos 40°, tan70°) theo thứ tự tăng dần mà không được sử dụng máy tính cầm tay hoặc bảng giá trị lượng giác. Đề thi thử vào lớp 10 năm 2020-2021 môn Toán của trường THPT Chu Văn An Hà Nội không chỉ giúp học sinh ôn tập kiến thức mà còn khuyến khích họ phát triển kỹ năng giải bài toán và làm việc độc lập.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào 07/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Phước : + Cho p là số nguyên tố lớn hơn 3. Chứng minh (p – 1)(p + 1) chia hết cho 24. + Cho đoạn thẳng AB và C là điểm nằm trên đoạn AB sao cho BC > AC. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, vẽ nửa đường tròn đường kính AB và nửa đường tròn đường kính BC. Lấy điểm M thuộc nửa đường tròn đường kính BC (M khác B, M khác C). Kẻ MH vuông góc với BC (H thuộc BC), đường thẳng MH cắt nửa đường tròn đường kính AB tại K. Hai đường thẳng AK và CM cắt nhau tại E. a) Chứng minh tứ giác BMKE nội tiếp và BE2 = BA.BC. b) Từ C kẻ CN vuông góc với AB (N thuộc nửa đường tròn đường kính AB), gọi P là giao điểm của NK và CE. Chứng minh rằng tâm đường tròn nội tiếp của các tam giác BNE và PNE cùng nằm trên đường thẳng BP. + Cho một bảng gồm 2023 hàng, 2023 cột. Các hàng được đánh số từ 1 đến 2023 từ trên xuống dưới; các cột đánh số từ 1 đến 2023 từ trái qua phải. Viết các số tự nhiên liên tiếp 0, 1, 2, … vào các ô của bảng theo đường chéo zic-zắc (như hình vẽ bên). Hỏi số 2024 được viết ở hàng nào, cột nào? Vì sao?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT TP Hồ Chí Minh : + Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi J là giao điểm của AI và DE; K là trung điểm của AB. a) Chứng minh tứ giác BIJD nội tiếp. b) Gọi M là giao điểm của KI và AC, N là giao điểm của AH và ED. c) Gọi Q là giao điểm của DI và EF, P là trung điểm của BC. Chứng minh ba điểm A, P, Q thẳng hàng. + Cho đường tròn tâm O nội tiếp hình thoi ABCD. Gọi E, F, G, H là các điểm lần lượt thuộc các cạnh AB, BC, CD, DA sao cho EF, GH cùng tiếp xúc với (O). a) Chứng minh CG·AH = AO2. b) Chứng minh EH song song FG. + Xét các số nguyên a < b < c thỏa mãn n = a3 + b3 + c3 − 3abc là số nguyên tố. a) Chứng minh: a < 0. b) Tìm tất cả các số nguyên dương a, b, c (a < b < c) sao cho n là ước của 2023.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán & Tin học) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Định : + Cho phương trình bậc hai: x2 + 2(m − 1)x − 2m = 0 (m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m. Tìm các giá trị của m để hai nghiệm x1, x2 thoả |x1 + 1| = |x2 + 1|. + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB > AC. Các tiếp tuyến tại B, C của (O) cắt nhau tại P, đường thẳng AP cắt đường tròn (O) tại Q (khác A). Gọi M là trung điểm BC. Kẻ đường cao AH của tam giác ABC. 1. Chứng minh tứ giác BOCP nội tiếp và HAB = 90° – 1/2.AOC. 2. Chứng minh HAB = OAC và QB/MC = AB/AM. 3. Gọi D, E, F lần lượt là hình chiếu vuông góc của Q lên BC, CA, AB. Chứng minh rằng D là trung điểm EF. + Cho hình vuông có cạnh bằng 20. Bên trong hình vuông này chọn 2023 điểm phân biệt (không nằm trên các cạnh của hình vuông). Xét tập hợp A có 2027 điểm gồm 4 đỉnh của hình vuông và 2023 điểm đã chọn. Chứng minh rằng tồn tại ít nhất một tam giác có 3 đỉnh thuộc A với diện tích nhỏ hơn 1/10.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hòa Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hòa Bình : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m + 2)x + 3. Tìm giá trị của m để đường thẳng (d) cắt hai trục Ox; Oy lần lượt tại hai điểm A và B sao cho tam giác AOB cân. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một con Robot được lập trình để chuyển động thẳng đều trên một quãng đường từ điểm A đến điểm B theo quy tắc: Đi được 120cm thi dừng lại 1 phút, đi tiếp 240cm rồi dừng lại 2 phút, đi tiếp 360cm rồi dừng lại 3 phút … tổng thời gian từ khi bắt đầu di chuyển từ A cho đến B là 253 phút. Tính quãng đường từ A đến B biết vận tốc của Robot không đổi là 40cm/phút. + Cho đường tròn tâm O, đường kính AB cố định. Trên tia đối của tia BA lấy điểm C cố định, qua C kẻ đường thẳng d vuông góc với AC. Gọi K là điểm cố định nằm giữa O và B (K khác O và B), qua K vẽ dây cung ED bất kì của đường tròn (O). Gọi P, Q lần lượt là giao điểm của AE và AD với đường thẳng d. Đường tròn ngoại tiếp tam giác APQ cắt tia AC tại điểm M (M khác A). Chứng minh rằng: a) Tứ giác PEDQ nội tiếp được trong một đường tròn. b) AKD đồng dạng AQM. c) AK.AM = AB.AC. d) Khi dây ED thay đổi thì tâm đường tròn ngoại tiếp tam giác APQ luôn nằm trên một đường cố định.