Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ phương trình ôn thi vào lớp 10

Tài liệu gồm 108 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. HỆ ĐỐI XỨNG LOẠI 1 Một hệ phương trình ẩn x, y được gọi là hệ phương trình đối xứng loại 1 nếu mỗi phương trình ta đổi vai trò của x, y cho nhau thì phương trình đó không đổi. Tính chất: Nếu x y 0 0 là một nghiệm thì hệ y x 0 0 cũng là nghiệm. Cách giải: Đặt S xy P xy điều kiện 2 S P 4 quy hệ phương trình về 2 ẩn S P. HỆ ĐỐI XỨNG LOẠI 2 Một hệ phương trình 2 ẩn x y được gọi là đối xứng loại 2 nếu trong hệ phương trình ta đổi vai trò x y cho nhau thì phương trình trở thành phương trình kia. Tính chất: Nếu x y 0 0 là 1 nghiệm của hệ thì y x 0 0 cũng là nghiệm. Phương pháp giải: Trừ vế với vế hai phương trình của hệ ta được một phương trình có dạng 0 x y x y f xy f xy. HỆ CÓ YẾU TỐ ĐẲNG CẤP ĐẲNG CẤP Là những hệ chứa các phương trình đẳng cấp. Hoặc các phương trình của hệ khi nhân hoặc chia cho nhau thì tạo ra phương trình đẳng cấp. Một số hệ phương trình tính đẳng cấp được giấu trong các biểu thức chứa căn đòi hỏi người giải cần tinh ý để phát hiện. Phương pháp chung để giải hệ dạng này là: Từ các phương trình của hệ ta nhân hoặc chia cho nhau để tạo ra phương trình đẳng cấp bậc n. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG Biến đổi tương đương là phương pháp giải hệ dựa trên những kỹ thuật cơ bản như: Thế / biến đổi các phương trình về dạng tích,cộng trừ các phương trình trong hệ để tạo ra phương trình hệ quả có dạng đặc biệt. PHƯƠNG PHÁP ĐẶT ẨN PHỤ Đặt ẩn phụ là việc chọn các biểu thức f xy gxy trong hệ phương trình để đặt thành các ẩn phụ mới làm đơn giản cấu trúc của phương trình, hệ phương trình. Qua đó tạo thành các hệ phương trình mới đơn giản hơn, hay quy về các dạng hệ quen thuộc như đối xứng, đẳng cấp. Để tạo ra ẩn phụ người giải cần xử lý linh hoạt các phương trình trong hệ thông qua các kỹ thuật: Nhóm nhân tử chung, chia các phương trình theo những số hạng có sẵn, nhóm dựa vào các hằng đẳng thức, đối biến theo đặc thù phương trình. PHƯƠNG PHÁP ĐƯA VỀ HẰNG ĐẲNG THỨC Điểm mấu chốt khi giải hệ bằng phương pháp biến đổi theo các hằng đẳng thức. KHI TRONG HỆ CÓ CHỨA PHƯƠNG TRÌNH BẬC 2 THEO ẨN x HOẶC y Khi trong hệ phương trình có chứa phương trình bậc hai theo ẩn x hoặc y ta có thể nghỉ đến các hướng xử lý như sau: Nếu ∆ chẵn, ta giải x theo y rồi thế vào phương trình còn lại của hệ để giải tiếp. Nếu ∆ không chẵn ta thường xử lý theo cách: Cộng hoặc trừ các phương trình của hệ để tạo được phương trình bậc hai có ∆ chẵn hoặc tạo thành các hằng đẳng thức. Dùng điều kiện ∆ ≥ 0 để tìm miền giá trị của biến x y. Sau đó đánh giá phương trình còn lại trên miền giá trị x y vừa tìm được. PHƯƠNG PHÁP ĐÁNH GIÁ Để giải được hệ phương trình bằng phương pháp đánh giá ta cần nắm chắc các bất đẳng thức cơ bản như: Cauchy, Bunhicopxki, các phép biến đổi trung gian giữa các bất đẳng thức, qua đó để đánh giá tìm ra quan hệ x y. Ngoài ra ta cũng có thể dùng hàm số để tìm GTLN – GTNN từ đó có hướng đánh giá, so sánh phù hợp.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương trình đại số ôn thi vào
Nội dung Chuyên đề phương trình đại số ôn thi vào Bản PDF - Nội dung bài viết Chương trình ôn thi vào lớp 10 môn Toán - Phương trình đại số Chương trình ôn thi vào lớp 10 môn Toán - Phương trình đại số Tài liệu này bao gồm 24 trang, hướng dẫn cụ thể các phương pháp giải và tuyển chọn các bài tập chuyên đề về phương trình đại số. Mỗi bài tập được đính kèm đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập hiệu quả cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Các bài toán trong tài liệu được lựa chọn từ các nguồn uy tín, đảm bảo mang lại trải nghiệm học tập thú vị và bổ ích cho người đọc.
Chuyên đề giải toán bằng cách lập phương trình hệ phương trình ôn thi vào
Nội dung Chuyên đề giải toán bằng cách lập phương trình hệ phương trình ôn thi vào Bản PDF - Nội dung bài viết Chuyên đề giải toán bằng cách lập phương trình hệ phương trình - Sách ôn thi vào lớp 10 môn Toán Chuyên đề giải toán bằng cách lập phương trình hệ phương trình - Sách ôn thi vào lớp 10 môn Toán Sách này bao gồm 20 trang, cung cấp hướng dẫn chi tiết về phương pháp giải và chứa các bài tập chuyên đề giải toán bằng cách lập phương trình - hệ phương trình. Tất cả các câu hỏi đều có đáp án và lời giải chi tiết, giúp cho học sinh lớp 9 có thể ôn tập một cách hiệu quả để chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán. Những bài toán được trích từ các nguồn đáng tin cậy, đảm bảo độ khó và đa dạng cho học sinh.
Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào
Nội dung Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi vào lớp 10 môn Toán - Hệ phương trình bậc nhất hai ẩn Tài liệu ôn thi vào lớp 10 môn Toán - Hệ phương trình bậc nhất hai ẩn Tài liệu chuyên đề này bao gồm 09 trang, được thiết kế dành cho học sinh lớp 9 chuẩn bị cho kì thi tuyển sinh vào lớp 10. Nội dung tài liệu tập trung vào phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình bậc nhất hai ẩn, kèm theo đáp án và lời giải chi tiết. Các bài tập được lựa chọn từ các nguồn đáng tin cậy, giúp học sinh hiểu rõ về kiến thức và rèn luyện kỹ năng giải bài toán hiệu quả.
Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào
Nội dung Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào Bản PDF - Nội dung bài viết Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Tài liệu này có tổng cộng 31 trang, cung cấp hướng dẫn chi tiết về phương pháp giải và lựa chọn các bài tập chuyên đề về hàm số bậc nhất và hàm số bậc hai. Nội dung của tài liệu bao gồm các bài tập được chọn lọc từ các đề thi tuyển sinh vào lớp 10 môn Toán, kèm theo đáp án và lời giải chi tiết. Đây sẽ là nguồn tư liệu hữu ích giúp học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới.