Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tổ hợp - xác suất - Bùi Trần Duy Tuấn

giới thiệu đến bạn đọc tài liệu chuyên đề tổ hợp – xác suất do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 180 trang bao gồm kiến thức cơ bản, phân dạng toán, ví dụ minh họa và tuyển chọn các bài tập trắc nghiệm có lời giải chi tiết các chủ đề quy tắc đếm, hoán vị – chỉnh hợp – tổ hợp, tính toán liên quan đến các công thức, nhị thức NewTơn, biến cố và xác suất của biến cố trong chương trình Đại số và Giải tích 11 chương 2. Tài liệu thích hợp với học sinh khối 11 trong quá trình tự học chương tổ hợp – xác suất và học sinh khối 12 nhằm ôn tập lại các kiến thức tổ hợp – xác suất đã học để chuẩn bị cho kỳ thi THPT Quốc gia. CHỦ ĐỀ 1 : QUY TẮC ĐẾM A. Kiến thức cơ bản cần nắm 1. Quy tắc cộng 2. Quy tắc nhân 3. Các bài toán đếm cơ bản B. Một số bài toán minh họa C. Bài tập trắc nghiệm CHỦ ĐỀ 2 : HOÁN VỊ – CHỈNH HỢP – TỔ HỢP A. Kiến thức cơ bản cần nắm 1. Hoán vị 2. Chỉnh hợp 3. Tổ hợp B. Một số bài toán điển hình C. Bài tập trắc nghiệm + Dạng 1. Bài toán đếm + Dạng 2. Xếp vị trí – cách chọn, phân công công việc + Dạng 3. Đếm tổ hợp liên quan đến hình học CHỦ ĐỀ 3 : TÍNH TOÁN LIÊN QUAN ĐẾN CÁC CÔNG THỨC A. Nhắc lại các công thức B. Bài tập trắc nghiệm [ads] CHỦ ĐỀ 4 : NHỊ THỨC NEWTƠN A. Kiến thức cần nắm 1. Công thức nhị thức Newtơn 2. Tam giác Pascal B. Các dạng toán liên quan đến nhị thức Newtơn 1. Xác định các hệ số trong khai triển nhị thức Newtơn a. Tìm hệ số của số hạng chứa x^m trong khai triển (ax^p + bx^q)^n b. Xác định hệ số lớn nhất trong khai triển nhị thức Niutơn c. Xác định hệ số của số hạng trong khai triển P(x) = (ax^t + bx^p + cx^q)^n 2. Các bài toán tìm tổng a. Thuần nhị thức Newton b. Sử dụng đạo hàm cấp 1, cấp 2 c. Sử dụng tích phân C. Bài tập trắc nghiệm + Dạng 1. Xác định các hệ số, số hạng trong khai triển nhị thức Newton + Dạng 2. Các bài toán tìm tổng CHỦ ĐỀ 5 : BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ A. Kiến thức cần nắm 1. Phép thử ngẫu nhiên và không gian mẫu 2. Biến cố 3. Xác suất của biến cố B. Các dạng toán về xác suất 1. Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm a. Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố b. Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp 2. Sử dụng quy tắc tính xác suất a. Phương pháp b. Một số bài toán minh họa C. Bài tập trắc nghiệm + Dạng 1. Xác định phép thử, không gian mẫu và biến cố + Dạng 2. Tìm xác suất của biến cố + Dạng 3. Các quy tắc tính xác suất

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tổ hợp và xác suất - Dương Minh Hùng
Tài liệu gồm 87 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tóm tắt lý thuyết và hướng dẫn giải các dạng bài tập chuyên đề tổ hợp và xác suất, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 2. BÀI 1 . CÁC QUY TẮC ĐẾM. + Dạng 1: Sử dụng quy tắc cộng. + Dạng 2: Sử dụng quy tắc nhân. + Dạng 3: Sử dụng quy tắc cộng và quy tắc nhân. BÀI 2 . HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. + Dạng 1: Bài toán chỉ sử dụng hoán vị hoặc tổ hợp hoặc chỉnh hợp. + Dạng 2: Bài toán kết hợp hoán vị, tổ hợp và chỉnh hợp. + Dạng 3: Bài toán liên quan đến hình học. + Dạng 4: Giải phương trình, bất phương trình, hệ phương trình, chứng minh liên quan đến hoán vị, tổ hợp, chỉnh hợp. BÀI 3 . NHỊ THỨC NEWTON. + Dạng 1: Khai triển một nhị thức Newton. + Dạng 2: Tìm hệ số, số hạng trong khai triển nhị thức Newton. + Dạng 3: Chứng minh, tính giá trị của biểu thức đại số tổ hợp có sử dụng nhị thức Newton. BÀI 4 . PHÉP THỬ VÀ BIẾN CỐ. + Dạng 1: Mô tả không gian mẫu, biến cố. + Dạng 2: Các câu hỏi lý thuyết tổng hợp. BÀI 5 . XÁC SUẤT CỦA BIẾN CỐ. + Dạng 1: Tính xác suất bằng định nghĩa. + Dạng 2: Tính xác suất bằng công thức cộng. + Dạng 3: Tính xác suất bằng công thức nhân. + Dạng 4: Bài toán kết hợp quy tắc cộng và quy tắc nhân xác suất.
Hướng dẫn giải các dạng toán tổ hợp và xác suất
Tài liệu gồm 102 trang, tổng hợp lý thuyết, dạng toán và bài tập các chủ đề thuộc chương trình Đại số và Giải tích 11 chương 2: tổ hợp và xác suất. Nội dung tài liệu hướng dẫn giải các dạng toán tổ hợp và xác suất: BÀI 1 . CÁC QUY TẮC ĐẾM CƠ BẢN. + Dạng toán 1. Bài toán sử dụng quy tắc cộng + Dạng toán 2. Bài toán sử dụng quy tắc nhân + Dạng toán 3. Bài toán sử dụng quy tắc bù trừ BÀI 2 . HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. + Dạng toán 1. Giải phương trình, bất phương trình, hệ phương trình. + Dạng toán 2. Các bài toán sử dụng hoán vị. + Dạng toán 3. Các bài toán sử dụng chỉnh hợp. + Dạng toán 4. Các bài toán sử dụng tổ hợp. [ads] BÀI 3 . NHỊ THỨC NEWTON. + Dạng toán 1. Tìm hệ số hoặc số hạng thỏa mãn điều kiện cho trước. + Dạng toán 2. Tìm hệ số trong khai triển nhị thức Niu-tơn (a + b)^n. + Dạng toán 3. Chứng minh hoặc tính tổng. BÀI 4 . BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ. + Dạng toán 1. Chọn hoặc sắp xếp đồ vật. + Dạng toán 2. Chọn hoặc sắp xếp người. + Dạng toán 3. Chọn hoặc sắp xếp số. BÀI 5 . CÁC QUY TẮC TÍNH XÁC SUẤT. BÀI 6 . BÀI TẬP ÔN CHƯƠNG 2.
160 câu vận dụng cao tổ hợp - xác suất ôn thi THPT môn Toán
Tài liệu gồm 79 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 160 câu vận dụng cao (VDC) tổ hợp – xác suất có đáp án và lời giải chi tiết, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 160 câu vận dụng cao tổ hợp – xác suất ôn thi THPT môn Toán: + Cho tập hợp A = {1; 2; 3; 4; . . . ; 100}. Gọi S là tập hợp gồm tất cả các tập con của A, mỗi tập con này gồm 3 phần tử của A và có tổng bằng 91. Chọn ngẫu nhiên một phần tử của S. Xác suất chọn được phần tử có ba số lập thành một cấp số nhân bằng? + Có 10 học sinh lớp A, 8 học sinh lớp B được xếp ngẫu nhiên vào một bản tròn (hai cách xếp được coi là giống nhau nếu cách xếp này là kết quả của cách xếp kia khi ta thực hiện phép quay bàn ở tâm một góc nào đó). Tính xác suất để không có hai học sinh bất kì nào của lớp B đứng cạnh nhau. [ads] + Trong kỳ thi tốt nghiệp THPT năm học 2019 – 2020, mỗi phòng thi gồm 24 thí sinh xếp vào 24 chiếc bàn khác nhau. Bạn An là một thí sinh dự thi 4 môn (Toán, Văn, Ngoại Ngữ, Khoa học tự nhiên), cả 4 lần thi đều thi tại 1 phòng thi duy nhất. Giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên. Tính xác suất để trong 4 lần thi An có đúng 2 lần ngồi vào cùng 1 vị trí.
Tổng ôn tập TN THPT 2020 môn Toán Tổ hợp và xác suất
Tài liệu gồm 32 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các chuyên đề: Tổ hợp và xác suất; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Tổ hợp và xác suất: I. KIẾN THỨC CẦN NẮM 1. Quy tắc đếm. + Quy tắc cộng. + Quy tắc nhân. 2. Hoán vị – Chỉnh hợp – Tổ hợp. + Định nghĩa hoán vị và số các hoán vị. + Định nghĩa chỉnh hợp và số các chỉnh hợp. + Định nghĩa tổ hợp và số các tổ hợp. [ads] 3. Tính xác xuất. Tính xác suất bằng định nghĩa. Tính xác suất bằng công thức: + Quy tắc cộng xác suất. + Công thức tính xác suất biến cố đối. + Quy tắc nhân xác suất. II. BÀI TẬP CÙNG MỨC ĐỘ ĐỀ MINH HỌA THPT