Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Phước Sytu xin gửi đến thầy cô và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&DĐT Bình Phước. Đề thi bao gồm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm, sẽ diễn ra vào ngày 09 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&DĐT Bình Phước: + Cho phương trình: \(2x^2 - mx + m^3 - 8m + 5 = 0\) với m là tham số. a) Tìm m để phương trình có 2 nghiệm trái dấu. b) Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn điều kiện: \(2x^2 + x - 1 = 0\). + Cho tam giác nhọn ABC, AB AC nội tiếp đường tròn O, D là điểm chính giữa trên cung nhỏ BC của đường tròn O, H là chân đường cao từ A của tam giác ABC. Hai điểm K L lần lượt là hình chiếu vuông góc của H lên AB và AC. a) Chứng minh AL CB AB KL. b) Lấy điểm E trên đoạn thẳng AD sao cho BD DE. Chứng minh E là tâm đường tròn nội tiếp tam giác ABC. c) Đường thẳng KL cắt đường tròn O tại hai điểm M N (K nằm giữa M L). Chứng minh AM AN AH. + Cho hai số tự nhiên a b thỏa mãn \(a^2 + b^2 = 32\). Chứng minh rằng \(a^2b^2\) là số chính phương. Mọi chi tiết xin vui lòng xem trong file Word đính kèm.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 – 2023 sở GD&ĐT Tây Ninh : + Căn cứ diễn biến mực nước hồ Dầu Tiếng và tình hình khí tượng thủy văn trên lưu vực, để chủ động phòng chống lũ cho công trình và khu vực hạ du, Công ty khai thác thủy lợi hồ Dầu Tiếng dự định xả một lượng nước ở hồ với lưu lượng 15 triệu 3 m trong một ngày. Do tình hình thời tiết có chiều hướng xấu Công ty đã quyết định điều chỉnh lưu lượng xả lên 20 triệu 3 m mỗi ngày nên đã hoàn thành công việc sớm hơn thời gian dự kiến 2 ngày. Hỏi Công ty đã xả bao nhiêu 3 m nước? + Cho tam giác ABC có ba góc nhọn và BAC 60 nội tiếp trong đường tròn (O). Trên đoạn thẳng OA lấy điểm I (IA IO) đường thẳng qua I vuông góc OA cắt các cạnh AB, AC lần lượt tại M và N. Chứng minh tứ giác BCNM nội tiếp. + Cho đường tròn (O) có đường kính AB 2 2022. Lấy điểm C trên (O) sao cho AC BC. Gọi H là hình chiếu vuông góc của C trên AB (H khác A). Kẻ HK vuông góc BC tại K. Tính 2 2 HK OK.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút (không kể thời gian giám thị phát đề); kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Nghệ An : + Cho phương trình x2 + 3x – 1 = 0 có hai nghiệm phân biệt x1 và x2. Không giải phương trình, hãy tính giá trị của biểu thức T. + Trong kỳ SEA Games 31 tổ chức tại Việt Nam, thú sao la được chọn làm linh vật. Một phân xưởng được giao sản xuất 420 thú nhồi bông sao la trong một thời gian dự định để làm quà tặng. Biết rằng nếu mỗi giờ phân xưởng sản xuất thêm 5 thú nhồi bông sao la thì sẽ rút ngắn được thời gian hoàn thành công việc là 2 giờ. Tính thời gian dự định của phân xưởng? + Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K thuộc AB, D thuộc AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I. a) Chứng minh CDKI là tứ giác nội tiếp. b) Chứng minh AD.AC = DH.AB. c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Bến Tre, tỉnh Bến Tre; đề thi gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022.