Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập chọn lọc nguyên hàm - tích phân, số phức, tọa độ không gian Oxyz

Tài liệu gồm có 50 trang được tổng hợp bởi thầy giáo Bùi Đình Thông, chọn lọc các câu hỏi và bài tập trắc nghiệm các chủ đề: Nguyên hàm, tích phân và ứng dụng, Số phức, Phương pháp tọa độ trong không gian Oxyz … có đáp án từ các đề thi chính thức THPT Quốc gia môn Toán từ năm 2016 đến năm 2019; nhằm giúp các em học sinh khối 12 ôn tập để chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia năm học 2019 – 2020 (dự kiến diễn ra từ ngày 08 – 11/08/2020). Trích dẫn bài tập chọn lọc nguyên hàm – tích phân, số phức, tọa độ không gian Oxyz: + Cho hình thang cong (H) giới hạn bởi các đường y = e^x, y = 0, x = 0, x = ln 4. Đường thẳng x = k (0 < k < ln4) chia (H) thành hai phần có diện tích là S1 và S2 như hình vẽ bên. Tìm k để S1 = 2S2. + Xét các số phức z thỏa mãn (z + 2i)(z – 2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng? [ads] + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (4;6;2) và B (2;-2;0) và mặt phẳng (P): x + y + z = 0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó. + Cho hai hàm số f(x) = ax^3 + bx^2 + cx – 1/2 và g(x) = dx^2 + ex + 1. Biết rằng đồ thị hàm số y = f(x) và y = g(x) cắt nhau tại 3 điểm có hoành độ lần lượt là −3; −1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi 2 đồ thị đã cho có diện tích bằng? + Cho đường thẳng y = 3x và parabol y = 2x^2 + a (a là tham số thực dương). Gọi S1 và S2 lần lượt là diện tích của 2 hình phẳng được gạch chéo trong hình vẽ bên. Khi S1 = S2 thì a thuộc khoảng nào dưới đây?

Nguồn: toanmath.com

Đọc Sách

Tóm tắt các dạng toán và bài tập Nguyên hàm - Tích phân - Nguyễn Thanh Sơn
Tài liệu gồm 16 trang tóm tắt phương pháp giải các dạng toán và bài tập chủ đề nguyên hàm – tích phân và ứng dụng. Nội dung tài liệu gồm 4 phần: A. Tính tích phân bằng định nghĩa B. Phương pháp đổi biến C. Phương pháp tích phân từng phần D. Ứng dụng của tich phân [ads]
64 bài tập Tích phân hàm lượng giác có lời giải - Trần Sĩ Tùng
Tài liệu gồm 15 trang giải chi tiết 64 bài toán tích phân hàm lượng giác. Các bài toán tích phân hàm lượng giác được phân thành 4 dạng: + Dạng 1: Biến đổi lượng giác + Dạng 2: Đổi biến số dạng 1 + Dạng 3: Đổi biến số dạng 2 + Dạng 4: Tích phân từng phần [ads]
35 bài tập Tích phân chứa căn thức có lời giải - Trần Sĩ Tùng
Tài liệu gồm 7 trang hướng dẫn giải chi tiết 35 bài toán tích phân chứa căn thức, tài liệu do thầy Trần Sĩ Tùng biên soạn. Các dạng toán bao gồm: + Dạng 1: Đổi biến số dạng 1 + Dạng 2: Đổi biến số dạng 2 + Dạng 3: Tích phân từng phần
31 bài tập Tích phân tổ hợp nhiều hàm số có lời giải - Trần Sĩ Tùng
Tài liệu tích phân tổ hợp nhiều hàm số gồm 16 trang với 31 bài toán có lời giải chi tiết do thầy Trần Sĩ Tung biên soạn.