Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập tự luận và trắc nghiệm Toán 12 học kì 1

Tài liệu gồm 151 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm Pi Latex, tuyển tập các dạng bài tập tự luận và trắc nghiệm Toán 12 học kì 1. Mục lục : A GIẢI TÍCH 3. Chương 1 KHẢO SÁT & VẼ ĐỒ THỊ HÀM SỐ 5. Vấn đề 1 SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN 6. Dạng 1 Xét tính đơn điệu của hàm số 7. Dạng 2 Tìm tham số để hàm y = (ax + b)/(cx + d) đơn điệu trên từng khoảng xác định 9. Dạng 3 Tìm tham số để hàm bậc ba y = ax3 + bx2 + cx + d đơn điệu trên R 10. Dạng 4 Tìm tham số m để hàm số đơn điệu trên K 11. Dạng 5 Dùng tính đơn điệu chứng minh bất đẳng thức 15. Vấn đề 2 CỰC TRỊ 24. Dạng 1 Tìm cực trị hàm số: cực đại và cực tiểu 25. Dạng 2 Tìm tham số m để hàm bậc ba có cực trị 27. Dạng 3 Tìm tham số m để hàm trùng phương có một hoặc ba cực trị 30. Dạng 4 Tìm tham số m để hàm số đạt cực trị tại điểm 32. Vấn đề 3 GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT 38. Dạng 1 Tìm GTLN, GTNN của hàm số trên đoạn [a; b] 39. Dạng 2 Tìm GTLN, GTNN của hàm số trên khoảng (a; b) 40. Dạng 3 Các bài toán vận dụng cao, toán thực tế min, max 41. Vấn đề 4 TIỆM CẬN 45. Vấn đề 5 KHẢO SÁT VẼ ĐỒ THỊ HÀM SỐ 46. Dạng 1 Các dạng đồ thị hàm số bậc ba y = ax3 + bx2 + cx + d 47. Dạng 2 Các dạng đồ thị của hàm số trùng phương y = ax4 + bx2 + c 48. Dạng 3 Hàm phân thức (ax + b)/(cx + d) 49. Vấn đề 6 PHƯƠNG TRÌNH TIẾP TUYẾN 54. Dạng 1 Cho tiếp điểm y − y0 = f0(x0)·(x − x0) 54. Dạng 2 Cho hệ số góc tiếp tuyến k = f0(x0) 55. Dạng 3 Cho điểm tiếp tuyến đi qua 56. Vấn đề 7 TƯƠNG GIAO ĐỒ THỊ 61. Dạng 1 Tìm giao điểm của 2 đồ thị y = f(x), y = g(x) 61. Dạng 2 Biện luận số nghiệm của phương trình dựa vào đồ thị 62. Dạng 3 (C): y = (ax + b)/(cx + d) cắt (d) tại 2 điểm phân biệt 63. Dạng 4 y = ax3 + bx2 + cx + d cắt (d) tại 3 điểm phân biệt 64. Dạng 5 (C): y = ax3 + bx2 + cx + d cắt trục hoành lập thành một cấp số cộng 65. Dạng 6 Tìm m để hàm trùng phương cắt (d) tại bốn điểm phân biệt 66. Vấn đề 8 ĐIỂM CỐ ĐỊNH CỦA HỌ ĐƯỜNG CONG 67. Vấn đề 9 ĐIỂM CÓ TỌA ĐỘ NGUYÊN CỦA ĐỒ THỊ 68. Vấn đề 10 ĐỒ THỊ HÀM CHỨA GIÁ TRỊ TUYỆT ĐỐI 70. Dạng 1 Trị tuyệt đối toàn phần y = |f(x)| (C0) 70. Dạng 2 Trị tuyệt đối cùa riêng x: y = f(|x|)(C0) 71. Dạng 3 Trị tuyệt đối cục bộ y = |u(x)| · v(x) (C0) 72. Vấn đề 11 TÍNH CHẤT ĐỒ THỊ HÀM F0(X) 73. Dạng 1 Tính đơn điệu của hàm số y = f(x) dựa vào đồ thị y = f0(x) 73. Dạng 2 Cực trị của hàm số y = f(x) dựa vào đồ thị y = f0(x) 74. ÔN TẬP CHƯƠNG I 80. Chương 2 LŨY THỪA, MŨ & LÔGARIT 83. Vấn đề 1 LŨY THỪA 84. Vấn đề 2 LÔGARIT 86. Vấn đề 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT 89. Vấn đề 4 PHƯƠNG TRÌNH MŨ 97. Vấn đề 5 PHƯƠNG TRÌNH LOGARIT 98. Vấn đề 6 BẤT PHƯƠNG TRÌNH MŨ 100. Vấn đề 7 BẤT PHƯƠNG TRÌNH LÔGARIT 102. Vấn đề 8 HỆ PHƯƠNG TRÌNH MŨ VÀ LÔGARIT 107. Dạng 1 107. Vấn đề 9 BÀI TOÁN THỰC TẾ 108. Dạng 1 Lãi đơn 108. Dạng 2 Lãi kép 108. Dạng 3 Tiền gửi hàng tháng 108. Dạng 4 Vay vốn trả góp 109. Chương 3 NGUYÊN HÀM, TICH PHÂN & ỨNG DỤNG 111. Chương 4 SỐ PHỨC 113. B HÌNH HỌC 115. Chương 5 KHỐI ĐA DIỆN 117. Vấn đề 1 KHỐI ĐA DIỆN ĐỀU 118. Dạng 1 Khối đa diện lồi 118. Dạng 2 Năm khối đa diện đều 119. Vấn đề 2 KHỐI CHÓP 121. Dạng 1 Hình chóp có cạnh bên vuông góc với đáy 121. Dạng 2 Hình chóp có mặt bên vuông góc với mặt đáy 124. Dạng 3 Hình chóp đa giác đều, hình chóp đều 126. Vấn đề 3 KHỐI LĂNG TRỤ 131. Dạng 1 Lăng trụ đứng, lăng trụ xiên 131. Chương 6 NÓN, TRỤ & CẦU 137. Vấn đề 1 MẶT CẦU 137. Vấn đề 1 MẶT CẦU – KHỐI CẦU 138. Dạng 1 Tìm tâm và bán kính mặt cầu ngoại tiếp hình chóp 140. Dạng 2 Tính diện tích, thể tích mặt cầu 141. Vấn đề 2 MẶT NÓN 143. Vấn đề 3 MẶT TRỤ 147. Chương 7 TỌA ĐỘ TRONG KHÔNG GIAN 151.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng - Giáp Minh Đức
Tài liệu gồm 118 trang tổng hợp bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng có đáp án. Các bài tập được phân dạng thành các mục: Phần 1: Các phương pháp tìm nguyên hàm I. Phương pháp dùng bảng nguyên hàm II. Phương pháp vi phân III. Phương pháp đổi biến số IV. Phương pháp nguyên hàm từng phần V. Nguyên hàm hữu tỉ VI. Nguyên hàm của của hàm số tại một điểm VII. Nguyên hàm của hàm số lượng giác Phần 2: Các phương pháp tính tích phân I. Phương pháp bảng nguyên hàm II. Phương pháp vi phân III. Phương pháp đổi biến số [ads] IV. Phương pháp tích phân từng phần V. Tính chất của tích phân VI. Tích phân hữu tỉ VII. Tích phân chứa dấu giá trị tuyệt đối Phần 3: Các ứng dụng của tích phân I. Ứng dụng tích phân trong tính diện tích hình phẳng II. Ứng dụng tích phân trong tính thể tích khối tròn xoay III. Các bài toán ứng dụng thực tế Các bài tập đều có đáp án
Bài tập tích phân chống Casio - Nguyễn Tiến Chinh
Tài liệu gồm 14 trang với 139 bài toán tích phân chống Casio. Đây là lớp các bài toán thuộc mức độ vận dụng, vận dụng cao trong chủ đề nguyên hàm, tích phân và ứng dụng, các bài toán “nhằm” hạn chế khả năng can thiệp của máy tính Casio trong việc giải nhanh, qua đó giúp học sinh phát huy tư duy giải toán. Tài liệu do thầy Nguyễn Tiến Chinh biên soạn.
Bài tập trắc nghiệm nguyên hàm, tích phân - Phạm Văn Sáu
Tài liệu gồm 33 trang với các bài tập trắc nghiệm nguyên hàm, tích phân được phân loại theo độ khó: Nhận biết, thông hiểu, vận dụng bậc thấp và vận dụng bậc cao.
Bài tập trắc nghiệm nguyên hàm - Nguyễn Đại Dương
NGUYÊN HÀM VÀ CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM Khái niệm nguyên hàm và tính chất Một số lưu ý cần nắm vững khi giải bài tập trắc nghiệm nguyên hàm: 1. Cần nắm vững bảng nguyên hàm 2. Nguyên hàm của một tích (thương) của nhiều hàm số không bao giờ bằng tích (thương) của các nguyên hàm của những hàm thành phần 3. Muốn tìm nguyên hàm của một hàm số, ta phải biến đổi hàm số này thành một tổng hoặc hiệu của những hàm số tìm được nguyên hàm (dựa vào bảng nguyên hàm) [ads] Các dạng toán trắc nghiệm nguyên hàm: + Dạng toán 1: Tìm nguyên hàm bằng công thức cơ bản + Dạng toán 2: Tìm nguyên hàm của hàm số hữu tỉ + Dạng toán 3: Tìm nguyên hàm bằng phương pháp đổi biến số + Dạng toán 4: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần