Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề bất đẳng thức - Lê Xuân Đại

Bất đẳng thức (BĐT) là một trong những dạng toán thường có trong các đề thi ĐH – CĐ. Các thí sinh của chúng ta đều rất sợ và lúng túng khi gặp phải bài toán chứng minh bất đẳng thức hoặc tìm giá trị lớn nhất, nhỏ nhất. Đơn giản là do các bài toán về bất đẳng thức thường là bài toán khó trong đề thi, nhằm phân loại và chọn được các học sinh khá giỏi. Thường thì các sĩ tử không biết bắt đầu từ đâu để giải quyết các bài toán về bất đẳng thức. Chuyên đề này muốn hệ thống cho các bạn các phương pháp cơ bản và một số dạng bài tập về bất đẳng thức. Hy vọng sẽ giúp các em học sinh lớp 12 đạt kết quả cao trong kì thi ĐH – CĐ sắp tới. Đọc xong chuyên đề này tôi tin các bạn sẽ không còn cảm giác sợ bất đẳng thức nữa, khi chúng ta hết đi sự sợ hãi và ngại ngần thì chúng ta sẽ đam mê và dành tình yêu cho nó, dành tình yêu và sự đam mê cho toán học nói chung và bất đẳng thức nói riêng là điều rất cần thiết của một người làm toán sơ cấp chân chính và sự lãng mạn của toán học cũng bắt nguồn từ đó. [ads] Những lời khuyên bổ ích khi học về bất đẳng thức: 1. Nắm chắc các tính chất cơ bản của bất đẳng thức. 2. Nắm vững các phương pháp cơ bản chứng minh bất đẳng thức như: phương pháp biến đổi tương đương; phương pháp sử dụng bất đẳng thức Côsi; phương pháp sử dụng đạo hàm. 3. Đặc biệt chú trọng vào ôn tập các kỹ thuật sử dụng bất đẳng thức Côsi, luôn biết đặt và trả lời các câu hỏi như: khi nào áp dụng; điều kiện cho các biến là gì; dấu bằng xảy ra khi nào; nếu áp dụng thế thì có xảy ra dấu bằng không; tại sao lại thêm bớt như vậy. 4. Luôn bắt đầu với các bất đẳng thức cơ bản (điều này vô cùng quan trọng); học thuộc một số bất đẳng thức cơ bản có nhiều áp dụng nhưng phải chú ý điều kiện áp dụng được.

Nguồn: toanmath.com

Đọc Sách

Bất đẳng thức Schur và phương pháp đổi biến PQR - Võ Thành Văn
Tài liệu gồm 17 trang giới thiệu bất đẳng thức Schur và phương pháp biến đổi PQR trong chứng minh bất đẳng thức. Nội dung tài liệu được chia làm 3 phần: + Phần 1. Bất đẳng thức Schur + Phần 2. Phương pháp biến đổi p, q, r + Phần 3. Các ví dụ minh họa [ads]
Kĩ thuật phân tích bình phương hoán vị trong Bất đẳng thức - VIF
Tài liệu gồm 10 trang hướng dẫn sử dụng kỹ thuật phân tích bình phương hoán vị trong việc giải các bài toán bất đẳng thức. Bất đẳng thức hoán vị là những bài toán rất đẹp bởi sự phát biểu đơn giản nhẹ nhàng của chúng. Tuy nhiên, việc giải chúng thì ngược lại, việc tìm một lời giải cho chúng vô cùng vất vả và khó khăn. Và đối với những bài toán có 2 đẳng thức trở lên thì mọi việc lại càng trở nên khó khăn hơn. Sau một thời gian học hỏi kinh nghiệm và tìm tòi, tôi đã tìm được một kĩ thuật để đánh giá cho những bất đẳng thức hoán vị đơn giản. Do độ khó của các bài toán nên đôi khi một số lời giải có đôi chút dài, nhưng bù lại là ta có thể làm chặt cho một số bài toán (đây là một điều bất ngờ mà kĩ thuật này mang lại). [ads] Cũng xin nói thêm rằng: bất đẳng thức hiện đại rất phong phú với rất nhiều bài tập. Tuy nhiên với bất đẳng thức hoán vị vòng quanh thì khác, nó rất ít nên có thể coi là những bài toán hiếm. Việc tạo ra một bất đẳng thức đúng đã là khó mà để bất đẳng thức đó hay thì càng khó hơn, nên đối với bất đẳng thức hoán vị thì điều đó lại càng khó thực hiện. Vì thế kĩ thuật này chỉ là một công cụ nhỏ nhưng lại vô cùng hữu ích để các bạn có thêm một hướng giải quyết các bài toán bất đẳng thức hoán vị vòng quanh ba biến.
Phương pháp dồn biến chứng minh bất đẳng thức - Phan Thành Việt
Tài liệu gồm 60 trang giới thiệu phương pháp dồn biến trong chứng minh bất đẳng thức do tác giả Phan Thành Việt biên soạn. Các nội dung có trong tài liệu : + Bất đẳng thức 3 biến với cực trị đạt được đối xứng + Dồn biến bằng kỹ thuật hàm số + Bất đẳng thức 3 biến với cực trị đạt được tại biên + Bất đẳng thức 4 biến + Dồn biến bằng hàm lồi + Dồn biến về giá trị trung bình + Định lý dồn biến tổng quát [ads]