Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập thể tích khối chóp đều có lời giải chi tiết

Bài toán yêu cầu tính thể tích khối chóp đều với một số giả thiết được cho trước như: độ dài cạnh, góc giữa hai đường thẳng, góc giữa một đường thẳng với một mặt phẳng, góc giữa hai mặt phẳng … là dạng bài toán thường gặp trong chương trình Hình học 12 và đề thi THPT Quốc gia môn Toán. Thông qua việc thực hành giải toán liên quan đến khối chóp đều, chúng ta sẽ rút ra được các tính chất và hướng tiếp cận giải quyết dạng toán này. giới thiệu đến bạn đọc đề bài và hướng dẫn giải chi tiết 85 bài tập thể tích khối chóp đều, tài liệu gồm 55 trang. Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối chóp đều có lời giải chi tiết: + Cắt một miếng giấy hình vuông như hình bên và xếp thành hình một hình chóp tứ giác đều. Biết các cạnh hình vuông bằng 20 cm, OM = x cm. Tìm x để hình chóp đều ấy có thể tích lớn nhất. + Cho khối chóp tam giác đều. Nếu tăng cạnh đáy lên hai lần và giảm chiều cao đi bốn lần thì thể tích của khối chóp đó sẽ: A. Giảm đi hai lần. B. Không thay đổi. C. Tăng lên hai lần. D. Giảm đi ba lần. [ads] + Trong tất cả các khối chóp tứ giác đều ngoại tiếp mặt cầu bán kính bằng a, thể tích V của khối chóp có thể tích nhỏ nhất. + Người ta gọt một khối lập phương gỗ để lấy khối tám mặt đều nội tiếp nó (tức là khối có các đỉnh là các tâm của các mặt khối lập phương). Biết các cạnh của khối lập phương bằng a. Hãy tính thể tích của khối tám mặt đều đó. + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Gọi G là trọng tâm của tam giác SAC và khoảng cách từ G đến mặt bên (SCD) bằng a√3/6. Tính khoảng cách từ tâm O của đáy đến mặt bên (SCD) và thể tích của khối chóp S.ABCD.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn bài tập trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết
Tài liệu gồm 111 trang tuyển chọn bài tập trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết, các bài tập với đầy đủ các dạng bài từ cơ bản đến nâng cao. Nội dung tài liệu : Phần A. Bài tập trắc nghiệm nguyên hàm có lời giải chi tiết + Dạng 1. Áp dụng công thức nguyên hàm cơ bản + Dạng 2. Phương pháp đổi biến số loại 1 tìm nguyên hàm (Đặt t = P(x)) + Dạng 3. Phương pháp đổi biến số loại 2 tìm nguyên hàm (Đặt x = Q(t)) + Dạng 4. Phương pháp từng phân để tìm nguyên hàm + Dạng 5. Tìm nguyên hàm của hàm số hữu tỉ + Dạng 6. Tìm nguyên hàm của hàm số lượng giác + Dạng 7. Phương pháp vi phân nguyên hàm Phần B. Bài tập trắc nghiệm nguyên hàm có đáp án [ads] Xem thêm :  Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng – Giáp Minh Đức (gồm 118 trang tổng hợp bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng có đáp án)
Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 97 trang tóm tắt lý thuyết và tuyển tập các bài toán chủ đề nguyên hàm, tích phân và ứng dụng. Tất cả các bài toán đều có đáp án và lời giải chi tiết . Bài 1. Nguyên hàm Bài 2. Một số phương pháp tìm nguyên hàm + Vấn đề 1. Phương pháp đổi biến số + Vấn đề 2. Phương pháp lấy nguyên hàm từng phần Bài 3. Tích phân + Vấn đề 1. Tính chất tích phân + Vấn đề 2. Tích phân cơ bản + Vấn đề 3. Ứng dụng thực tiễn [ads] Bài 4. Một số phương pháp tính tích phân + Vấn đề 1.1. Phương pháp đổi biến số loại 1 + Vấn đề 1.2. Phương pháp đổi biến số loại 2 + Vấn đề 2. Phương pháp tích phân từng phần + Vấn đề 3. Tích phân ẩn hsm số Bài 5. Ứng dụng của tích phân + Vấn đề 1. Tính diện tích hình phẳng + Vấn đề 2. Tính thể tích khối tròn xoay
Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng - Giáp Minh Đức
Tài liệu gồm 118 trang tổng hợp bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng có đáp án. Các bài tập được phân dạng thành các mục: Phần 1: Các phương pháp tìm nguyên hàm I. Phương pháp dùng bảng nguyên hàm II. Phương pháp vi phân III. Phương pháp đổi biến số IV. Phương pháp nguyên hàm từng phần V. Nguyên hàm hữu tỉ VI. Nguyên hàm của của hàm số tại một điểm VII. Nguyên hàm của hàm số lượng giác Phần 2: Các phương pháp tính tích phân I. Phương pháp bảng nguyên hàm II. Phương pháp vi phân III. Phương pháp đổi biến số [ads] IV. Phương pháp tích phân từng phần V. Tính chất của tích phân VI. Tích phân hữu tỉ VII. Tích phân chứa dấu giá trị tuyệt đối Phần 3: Các ứng dụng của tích phân I. Ứng dụng tích phân trong tính diện tích hình phẳng II. Ứng dụng tích phân trong tính thể tích khối tròn xoay III. Các bài toán ứng dụng thực tế Các bài tập đều có đáp án
Bài tập tích phân chống Casio - Nguyễn Tiến Chinh
Tài liệu gồm 14 trang với 139 bài toán tích phân chống Casio. Đây là lớp các bài toán thuộc mức độ vận dụng, vận dụng cao trong chủ đề nguyên hàm, tích phân và ứng dụng, các bài toán “nhằm” hạn chế khả năng can thiệp của máy tính Casio trong việc giải nhanh, qua đó giúp học sinh phát huy tư duy giải toán. Tài liệu do thầy Nguyễn Tiến Chinh biên soạn.