Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập VDC nguyên hàm, tích phân và ứng dụng

Tài liệu gồm 138 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) nguyên hàm, tích phân và ứng dụng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC nguyên hàm, tích phân và ứng dụng: CHỦ ĐỀ 1 . NGUYÊN HÀM VÀ MỘT SỐ PHƯƠNG PHÁP TÌM NGUYÊN HÀM. Dạng 1: Tìm nguyên hàm bằng các phép biến đổi sơ cấp. Dạng 2: Phương pháp đổi biến dạng 1, đặt u = u(x). Dạng 3: Tìm nguyên hàm bằng cách đổi biến dạng 2. Dạng 4: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 5: Các bài toán thực tế ứng dụng nguyên hàm. CHỦ ĐỀ 2 . TÍCH PHÂN VÀ MỘT SỐ PHƯƠNG PHÁP TÍNH TÍCH PHÂN. Dạng 1: Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2: Tính tích phân bằng phương pháp đổi biến. Dạng 3: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4: Tích phân chứa dấu giá trị tuyệt đối. Dạng 5: Tính tích phân các hàm đặc biệt, hàm ẩn. Dạng 6: Bất đẳng thức tích phân. CHỦ ĐỀ 3 . ỨNG DỤNG CỦA TÍCH PHÂN. Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.

Nguồn: toanmath.com

Đọc Sách

Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 81 trang tuyển chọn câu hỏi và bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit có lời giải chi tiết do thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh biên soạn. Các bài tập trong tài liệu đa số là các bài toán có mức độ vận dụng cao, nhiều câu là các bài toán phân loại trong các đề thi thử môn Toán. Nội dung tài liệu : Bài 01. Lũy thừa – hàm số lũy thừa Bài 02. Logarit Bài 03. Hàm số mũ và hàm số logarit + Vấn đề 1. Tìm tập xác định của hàm số của hàm số mũ và hàm số logarit + Vấn đề 2. Tính đạo hàm của hàm số mũ và hàm số logarit + Vấn đề 3. Tính đơn điệu của hàm số mũ và hàm số logarit + Vấn đề 4. Đồ thị của hàm số mũ và hàm số logarit + Vấn đề 5. Tính giá trị biểu thức chứa mũ và logarit [ads] Bài 04. Phương trình mũ, phương trình logarit bất phương trình mũ, bất phương trình loagrit + Vấn đề 1. Phương trình, bất phương trình mũ + Vấn đề 2. Phương trình, bất phương trình logarit + Vấn đề 3. Phương trình, bất phương trình mũ – logarit chứa tham số Bài 05. Hệ phương trình mũ, hệ phương trình logarit Để giải hệ phương trình mũ, hệ phương trình logarit ta thường sửa dụng các phương pháp quen thuộc như: phương pháp thế, biến đổi hệ về phương trình đại số, phương pháp hàm số … Cuối cùng là tạo ra một hệ đơn giản và kết luận nghiệm.
Tuyển chọn bài tập trắc nghiệm chuyên đề mũ và logarit - Nguyễn Khánh Nguyên
Tài liệu gồm 42 trang tuyển chọn 352 bài toán trắc nghiệm chuyên đề mũ và logarit theo các chủ đề: + Chủ đề 1. Lũy thừa + Chủ đề 2. Lôgarít + Chủ đề 3. Hàm số lũy thừa – mũ – lôgarít + Chủ đề 4. Phương trình mũ + Chủ đề 5. Phương trình lôgarít [ads] + Chủ đề 6. Hệ phương trình mũ – lôgarít + Chủ đề 7. Bất phương trình mũ + Chủ đề 8. Bất phương trình lôgarít + Chủ đề 9. Các bài vận dụng cao
195 bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit - Lương Văn Huy
Tài liệu gồm 22 trang với các nội dung gồm: + Kiến thức cơ bản về luỹ thừa và hàm số mũ + Các công thức tính toán trong bài toán lãi ngân hàng + 195 bài tập trắc nghiệm
Bài tập trắc nghiệm chuyên đề mũ và logarit có lời giải chi tiết
Tài liệu gồm 5 phần: 1. Lũy thừa 2. Logarit 3. Hàm số lũy thừa – hàm số mũ – hàm số logarit 4. Phương trình, bất phương trình mũ 5. Phương trình, bất phương trình logarit