Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán - Lư Sĩ Pháp (Tập 1)

giới thiệu đến các em tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán (Tập 1) do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 158 trang tổng hợp các dạng toán và bài tập các chuyên đề thuộc chương trình Giải tích 12. Chuyên đề 1 . Ứng dụng của đạo hàm – Khảo sát và vẽ đồ thị hàm số – Bài toán liên quan (Trang 01 – 39) + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho. + Dạng 2. Tìm tham số m thuộc R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó. + Dạng 3. Tìm tham số m thuộc R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (a;b). + Dạng 4. Tìm các điểm cực trị của hàm số y = f(x). + Dạng 5. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0. + Dạng 6. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán. + Dạng 7. Tìm GTLN – GTNN của hàm số trên đoạn [a;b]. Xét hàm số y = f(x). + Dạng 8. Tìm GTLN – GTNN của hàm số chứa căn thức. + Dạng 9. Tìm GTLN – GTNN của hàm số trên một khoảng (a;b). + Dạng 10. Ứng dụng vào bài toán thực tế. + Dạng 11. Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên. + Dạng 12. Tìm các đường tiệm cận của hàm số nhất biến. + Dạng 13. Tìm các đường tiệm đứng của hàm số khác. + Dạng 14. Khảo sát sự biến thiên và vẽ đồ thị hàm số. + Dạng 15. Biện luận số giao điểm của hai đồ thị. + Dạng 16. Biện luận số nghiệm của phương trình bằng đồ thị. + Dạng 17. Viết phương trình tiếp tuyến. + Dạng 18. Sự tiếp xúc của các đường cong. [ads] Chuyên đề 2 . Lũy thừa – Mũ – Lôgarit. Phương trình, bất phương trình Mũ – Lôgarit và các bài toán ứng dụng thực tế (Trang 40 – 77) + Dạng 1. Xét tính đúng sai của một mệnh đề. + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit. + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước. + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit. + Dạng 5. Tập xác định của hàm số. + Dạng 6. Tính đạo hàm. + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình. + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế. Chuyên đề 3 . Nguyên hàm – Tích phân – Ứng dụng của tích phân trong hình học (Trang 78 – 124) + Dạng 1. Nguyên hàm và các phương pháp tìm nguyên hàm. + Dạng 2. Tích phân và các phương pháp tính tích phân. + Dạng 3. Ứng dụng của tích phân trong hình học. Chuyên đề 4 . Số phức (Trang 125 – 154) + Dạng 1. Số phức và các phép toán trên số phức. + Dạng 2. Phương trình bậc hai. + Dạng 3. Cực trị số phức. + Dạng 4. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z|. Ở mỗi chuyên đề, nội dung tài liệu được chia thành 2 phần: + Phần 1 . Phần lý thuyết: Ở phần này thầy Lư Sĩ Pháp trình bày đầy đủ lý thuyết cần nắm cho mỗi chuyên đề và các dạng toán cần nắm. + Phần 2 . Phần trắc nghiệm: Bài tập trắc nghiệm có đáp án theo các chuyên đề, đa dạng, phong phú và bám sát cấu trúc đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Nội dung của cuốn tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán – Lư Sĩ Pháp (Tập 1) bám sát chương trình chuẩn và chương trình nâng cao môn Giải tích 12 đã được Bộ Giáo dục và Đào tạo quy định.

Nguồn: toanmath.com

Đọc Sách

Phát triển các câu VD VDC trong đề tham khảo TN THPT 2021 môn Toán
Nội dung Phát triển các câu VD VDC trong đề tham khảo TN THPT 2021 môn Toán Bản PDF - Nội dung bài viết Tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán Tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán Tài liệu này gồm 60 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Giáo Viên Toán Việt Nam. Cùng nhau, họ phân tích, định hướng tìm lời giải và xây dựng các bài toán tương tự các câu vận dụng – vận dụng cao trong đề thi tham khảo tốt nghiệp THPT năm 2021 môn Toán (câu 41 – câu 50). Trích dẫn tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán: + Đây là bài toán tính tích phân của hàm hợp. Để tính được tích phân trên ta phải thực hiện phép đổi biến để đưa về hàm đã cho. Cụ thể các bước thực hiện như sau: Bước 1: Đặt 2sin(1/x) = t. Bước 2: Biểu thị cos(x)dx = dt. Bước 3: Đổi cận và tính tích phân từ a đến b f(t)dt. Đây là dạng toán thuộc mức độ vận dụng, việc nhận ra hướng giải đòi hỏi học sinh phải nắm chắc các khái niệm và tính chất của tích phân cũng như các phương pháp tính tích phân. + Hướng phát triển: Xét các số phức thỏa mãn điều kiện (cho một giả thiết về modun, một giả thiết về số thuần ảo/ số thực) đưa về phương trình hoặc hệ phương trình. Nếu cho giả thiết số thuần ảo thì chỉ cần xác định phần thực và cho bằng 0. Nếu cho giả thiết là số thực thì chỉ cần xác định phần ảo và cho bằng 0. + Bài toán trên là bài toán về tính thể tích khối chóp liên quan góc giữa một đường thẳng và mặt phẳng. Thông thường đề bài hay cho góc giữa một cạnh bên và mặt đáy của hình chóp liên quan đến chân đường cao của hình chóp, tức hình chiếu của đường thẳng lên mặt phẳng tương đối dễ xác định, thì dạng bài này đề lại cho góc giữa một đường thẳng và mặt phẳng mà tương đối khó xác định hình chiếu của đường lên mặt hơn. Khi xác định được góc giữa đường thẳng và mặt phẳng suy ra độ dài đường cao, từ đó tính thể tích khối chóp. Để làm tốt được bài tập dạng này các em cần nắm chắc phương pháp xác định góc giữa đường thẳng và mặt phẳng.
Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh
Nội dung Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh Bản PDF - Nội dung bài viết Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán Huỳnh Văn Ánh Tài liệu Phát triển đề tham khảo thi tốt nghiệp THPT 2021 môn Toán do thầy giáo Huỳnh Văn Ánh biên soạn bao gồm 239 trang. Tài liệu này tập trung vào việc giới thiệu kiến thức cần ghi nhớ và chọn lọc các bài tập trắc nghiệm từ 50 dạng toán khác nhau được phát triển từ đề tham khảo (đề minh họa) thi tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo. Cụ thể, tài liệu này chia các dạng toán theo cấp độ từ lớp 1 đến lớp 50, bao gồm nhiều chủ đề khác nhau. Đầu tiên là dạng toán về phép đếm, hoán vị, chỉnh hợp và tổ hợp cho học sinh lớp 1. Tiếp theo là các dạng toán khó hơn như cực trị, tiệm cận, nhận dạng đồ thị, giá trị lớn nhất/nhỏ nhất, bất phương trình, xác suất, số phức, tích phân, và nhiều chủ đề khác từ lớp 2 đến lớp 50. Đặc biệt, tài liệu cũng tập trung vào việc giải quyết các bài toán ứng dụng thực tế để giúp học sinh áp dụng kiến thức toán học vào cuộc sống hàng ngày. Ngoài ra, tài liệu cũng giúp học sinh rèn luyện kỹ năng giải toán, tư duy logic và cải thiện kỹ năng làm bài thi tốt nghiệp THPT. Với sự chăm chỉ học tập và ôn luyện theo tài liệu này, học sinh sẽ cải thiện khả năng làm toán, tự tin hơn khi đối mặt với kỳ thi tốt nghiệp THPT 2021 môn Toán. Tài liệu này thực sự là người bạn đồng hành đắc lực cho các học sinh trên con đường chinh phục môn Toán trong kỳ thi quan trọng của mình.
Phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán Lê Văn Đoàn
Nội dung Phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán Lê Văn Đoàn Bản PDF - Nội dung bài viết Giới thiệu về tài liệu Phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán Lê Văn Đoàn Giới thiệu về tài liệu Phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán Lê Văn Đoàn Tài liệu "Phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán" biên soạn bởi thầy giáo Lê Văn Đoàn là một công cụ hữu ích để học sinh lớp 12 chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2020-2021 do Bộ Giáo dục và Đào tạo tổ chức. Với 146 trang bài tập, câu hỏi trắc nghiệm tương tự như trong đề thi thật, kèm theo đáp án chi tiết, tài liệu giúp học sinh rèn luyện và nâng cao kiến thức để đạt kết quả cao trong kỳ thi quan trọng này. Tài liệu bao gồm 50 dạng toán đề minh họa TN THPT 2021 môn Toán, từ các dạng cơ bản đến nâng cao, giúp học sinh ôn tập một cách hiệu quả. Các dạng toán bao gồm hoán vị - chỉnh hợp - tổ hợp, cấp số cộng, hàm số, logarit, đạo hàm, nguyên hàm, số phức, tích phân, hệ Oxyz, xác suất, bất phương trình, và nhiều dạng toán khác. Với tài liệu này, học sinh có thể tự tin hơn khi ôn tập kiến thức, vận dụng lý thuyết vào thực hành, và đạt kết quả tốt trong kỳ thi tốt nghiệp THPT môn Toán. Hãy cùng tham gia vào quá trình học tập và nâng cao trình độ Toán của mình với tài liệu chất lượng này!
Phân loại câu hỏi trong các đề thi THPT Quốc gia môn Toán của Bộ GD ĐT
Nội dung Phân loại câu hỏi trong các đề thi THPT Quốc gia môn Toán của Bộ GD ĐT Bản PDF - Nội dung bài viết Phân loại câu hỏi trong các đề thi THPT Quốc gia môn Toán Phân loại câu hỏi trong các đề thi THPT Quốc gia môn Toán Tài liệu "Phân loại câu hỏi trong các đề thi THPT Quốc gia môn Toán" được biên soạn bởi thầy giáo Nguyễn Minh Hiếu, giáo viên Toán tại trường THPT Phan Đình Phùng, thành phố Đồng Hới, tỉnh Quảng Bình. Tài liệu bao gồm 263 trang, cung cấp câu hỏi đã được phân loại trong các đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Mỗi câu hỏi đi kèm với đáp án và lời giải chi tiết, giúp học sinh khối 12 ôn tập và chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm học 2020-2021. Phân loại câu hỏi trong tài liệu này bao gồm các chuyên đề sau: Chuyên đề 1: Ứng Dụng Của Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số. Bao gồm các phần: Tính Đơn Điệu Của Hàm Số, Cực Trị Của Hàm Số, Giá Trị Lớn Nhất Và Giá Trị Nhỏ Nhất Của Hàm Số, Đường Tiệm Cận Của Đồ Thị Hàm Số, và Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Của Hàm Số. Chuyên đề 2: Khối Đa Diện. Bao gồm các phần: Khối Đa Diện Và Thể Tích Của Khối Đa Diện, Thể Tích Khối Chóp, Thể Tích Khối Lăng Trụ, và Tỉ Số Thể Tích. Chuyên đề 3: Hàm Số Lũy Thừa, Hàm Số Mũ Và Hàm Số Lôgarit. Bao gồm các phần: Lũy Thừa, Lôgarit, Hàm Số Lũy Thừa, Hàm Số Mũ Và Hàm Số Lôgarit, Phương Trình, Bất Phương Trình Mũ, Phương Trình, Bất Phương Trình Lôgarit, và Bài Toán Thực Tế. Chuyên đề 4: Mặt Nón, Mặt Trụ, Mặt Cầu. Bao gồm các phần: Mặt Nón, Mặt Trụ, Mặt Cầu. Chuyên đề 5: Nguyên Hàm, Tích Phân Và Ứng Dụng. Bao gồm các phần: Nguyên Hàm, Tích Phân, và Ứng Dụng Của Tích Phân. Tài liệu còn bao gồm các chuyên đề khác như: Phương Pháp Tọa Độ Trong Không Gian, Số Phức, Tổ Hợp, Xác Suất, Dãy Số, Giới Hạn, Đạo Hàm, Góc Và Khoảng Cách. Mỗi chuyên đề đều được biên soạn một cách cụ thể và dễ hiểu, giúp học sinh ôn tập và nắm vững kiến thức cho kỳ thi sắp tới.