Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 lần 1 năm 2023 - 2024 trường THCS Đắk Ơ - Bình Phước

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 lần 1 năm học 2023 – 2024 trường THCS Đắk Ơ, huyện Bù Gia Mập, tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 10 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi HSG Toán 9 lần 1 năm 2023 – 2024 trường THCS Đắk Ơ – Bình Phước : + Cho AB là đường kính của đường tròn (O; R). C là một điểm thay đổi trên đường tròn (C khác A và B), kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của AC; OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M; MB cắt CH tại K. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn. b) Chứng minh MC là tiếp tuyến của (O; R). c) Chứng minh K là trung điểm của CH. + Cho tam giác đều ABC. Trên các cạnh BC, CA, AB lần lượt lấy ba điểm bất kỳ I, J, K sao cho K khác A, B và 0 IKJ 60. Chứng minh rằng: 2 4 AB AJ BI. Dấu “=” xảy ra khi nào? + Cho các số thực dương x, y thỏa mãn 2 2 7x 13xy 2y 0. Tính giá trị của biểu thức 2x 6y B 7x 4y.

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán 9 cấp huyện năm 2018 - 2019 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề HSG Toán 9 cấp huyện năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết + thang điểm. Trích dẫn đề HSG Toán 9 cấp huyện năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho các số thực x, y thoả mãn. Chứng minh rằng tích xy là một số không dương. + Cho tam giác ABC vuông tại A. Các đường trung tuyến AD và BE vuông góc với nhau tại G. Biết AB 6 cm, tính cạnh huyền BC. + Tổng của n số nguyên dương không nhất thiết phân biệt là 100. Tổng của 7 số trong số chúng nhỏ hơn 15. Tìm giá trị nhỏ nhất của n?
Đề học sinh giỏi huyện Toán 9 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề học sinh giỏi Toán 9 cấp trường năm 2017 - 2018 trường THCS Sông Trí - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán 9 cấp trường năm học 2017 – 2018 trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán 9 cấp trường năm 2017 – 2018 trường THCS Sông Trí – Hà Tĩnh : + Giả sử D là một điểm nằm trong tam giác nhọn ABC sao cho 0 ADB ACB 90 và AC BD AD BC. Chứng minh rằng 2 AB CD AC BD. + Cho tam giác ABC. Biết rằng tồn tại hai điểm M N lần lượt trên các cạnh AB BC sao cho 2 BM BN AM CN và BNM ANC. Chứng minh rằng tam giác ABC vuông? + Cho tam giác ABC vuông tại A, đường cao AH, đường phân giác AD. Biết BH = 63 cm; CH = 112 cm. Tính HD.
Đề khảo sát HSG lần 1 Toán 9 năm 2017 - 2018 trường THCS Thanh Lãng - Vĩnh Phúc
Đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc : + Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5. + Cho ABC nhọn, có ba đường cao AD, BI, CK cắt nhau tại H. Gọi chân các đường vuông góc hạ từ D xuống AB, AC lần lượt là E và F. a) Chứng minh rằng: AE.AB = AF.AC b) Giả sử HD = 1 3 AD. Chứng minh rằng: tanB.tanC = 3 c) Gọi M, N lần lượt là chân đường vuông góc kẻ từ D đến BI và CK. Chứng minh rằng: 4 điểm E, M, N, F thẳng hàng. + Cho a, b, c là 3 số dương thỏa mãn điều kiện 1 1 1 2 a + b + 1 b + c + 1 c + a + 1 Tìm giá trị lớn nhất của tích (a + b)(b + c)(c + a).