Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn tập giữa học kì 2 (HK2) lớp 11 môn Toán năm 2022 2023 trường THPT Trương Vĩnh Ký Bến Tre

Nội dung Đề ôn tập giữa học kì 2 (HK2) lớp 11 môn Toán năm 2022 2023 trường THPT Trương Vĩnh Ký Bến Tre Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề tham khảo ôn tập giữa học kì 2 môn Toán lớp 11 năm học 2022 – 2023 trường THPT Trương Vĩnh Ký, tỉnh Bến Tre; đề thi gồm 20 câu trắc nghiệm và 04 câu tự luận, thời gian làm bài: 90 phút (không kể thời gian phát đề). Trích dẫn Đề ôn tập giữa kì 2 Toán lớp 11 năm 2022 – 2023 trường THPT Trương Vĩnh Ký – Bến Tre : + Cho hai dãy số (un) và (vn), biết limun = a và limvn = b. Trong các kết luận sau, kết luận nào sai? + Đường thẳng được gọi là vuông góc với mặt phẳng nếu A. nó vuông góc với một đường thẳng nằm trên mặt phẳng. B. nó vuông góc với hai đường thẳng nằm trên mặt phẳng. C. nó vuông góc với ba đường thẳng nằm trên mặt phẳng. D. nó vuông góc với mọi đường thẳng nằm trên mặt phẳng. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng a, SA vuông góc với đáy và SA = a2. Gọi M là trung điểm của cạnh SB. a) Chứng minh CD vuông góc với (SAD); BD vuông góc với SO. b) Tính góc giữa hai đường thẳng OM và SC. c) Tính cosin góc tạo bởi hai đường thẳng CM và BD.

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa học kỳ 2 Toán 11 năm 2020 - 2021 trường THPT Ngô Gia Tự - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi giữa học kỳ 2 Toán 11 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk; đề được biên soạn theo hình thức đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 16 câu, chiếm 04 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 60 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kỳ 2 Toán 11 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk : + Hình bình hành không thể là hình biểu diễn của hình nào trong các hình sau? A. Hình bình hành B. Hình vuông C. Hình thang (có hai cạnh bên không song song) D. Hình chữ nhật. + Các mặt bên của hình lăng trụ là: A. Hình vuông B. Hình chữ nhật C. Hình bình hành D. Hình tam giác. + Chọn khẳng định đúng trong các khẳng định dưới đây: A. Nếu mặt phẳng (P) chứa hai đường thẳng a, b và a, b cùng song song với mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q). B. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt (P) và (Q) thì (P) và (Q) song song với nhau. C. Nếu mặt phẳng (P) chứa đường thẳng a và a song song với mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q). D. Nếu mặt phẳng (P) chứa hai đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q).
Đề thi giữa kì 2 Toán 11 năm 2020 - 2021 trường THPT Lê Trọng Tấn - TP HCM
Đề thi giữa kì 2 Toán 11 năm học 2020 – 2021 trường THPT Lê Trọng Tấn, quận Tân Phú, thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi giữa kì 2 Toán 11 năm 2020 – 2021 trường THPT Lê Trọng Tấn – TP HCM : + Chứng minh rằng phương trình sau luôn có nghiệm với mọi giá trị tham số m. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a2, BC = a5. SA vuông góc (ABCD), SA = a. a) Chứng minh: BC vuông góc (SAB). b) Xác định và tính góc giữa đường thẳng SD và mặt phẳng (ABCD). + Tìm số hạng đầu u1 và công bội q của cấp số nhân.
Đề thi giữa kì 2 Toán 11 năm 2020 - 2021 trường Phan Đình Phùng - Hà Nội
Ngày … tháng 03 năm 2021, trường THPT Phan Đình Phùng, quận Ba Đình, thành phố Hà Nội tổ chức kiểm tra khảo sát chất lượng môn Toán lớp 11 giai đoạn giữa học kì 2 năm học 2020 – 2021. Đề thi giữa kì 2 Toán 11 năm 2020 – 2021 trường Phan Đình Phùng – Hà Nội mã đề 123 gồm 03 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 05 điểm, phần tự luận gồm 04 câu, chiếm 05 điểm, thời gian làm bài 60 phút (không kể thời gian giao đề), đề thi có đáp án và lời giải chi tiết mã đề 123, 246, 357, 479. Trích dẫn đề thi giữa kì 2 Toán 11 năm 2020 – 2021 trường Phan Đình Phùng – Hà Nội : + Cho dãy số 1; 2; 3; -4; 5; 7; 8; 9; 110. Khẳng định nào sau đây đúng? A. Dãy tăng và bị chặn. B. Dãy không bị chặn. C. Dãy giảm và bị chặn. D. Dãy số không tăng, không giảm. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và SA ⊥ (ABCD). a) Chứng minh: BD ⊥ (SAC). b) Gọi AH là đường cao của ∆SAB. Chứng minh rằng AH ⊥ BC. c) Xác định giao điểm K của SC với mặt phẳng (ADH). Chứng minh rằng tứ giác ADKH là hình thang vuông. + Cho hình hộp ABCD.EFGH. Khẳng định nào sau đây đúng? A. Ba véctơ EH, EF và AC đồng phẳng. B. Ba véctơ EH, EA và EF đồng phẳng. C. Ba véctơ GH, GF và BG đồng phẳng. D. Ba véctơ EH, EF và AG đồng phẳng.
Đề thi giữa kỳ 2 Toán 11 năm 2020 - 2021 trường Lương Ngọc Quyến - Thái Nguyên
Đề thi giữa kỳ 2 Toán 11 năm 2020 – 2021 trường Lương Ngọc Quyến – Thái Nguyên được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 30 câu, chiếm 06 điểm, phần tự luận gồm 04 câu, chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi giữa kỳ 2 Toán 11 năm 2020 – 2021 trường Lương Ngọc Quyến – Thái Nguyên : + Đầu mùa thu hoạch xoài, một bác nông dân đã bán cho người thứ nhất nửa số xoài thu hoạch được và cho thêm một quả (không tính tiền), bán cho người thứ hai nửa số xoài còn lại và cho thêm một quả (không tính tiền), bán cho người thứ ba nửa số xoài còn lại và cho thêm một quả (không tính tiền) … Đến lượt người thứ bảy bác cũng bán nửa số xoài còn lại và cho thêm một quả (không tính tiền) thì không còn quả nào nữa. Hỏi bác nông dân đã thu hoạch được bao nhiêu quả xoài đầu mùa? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, H, K lần lượt là trung điểm của AB, CD, SB, SC. a) Chứng minh rằng MN song song với HK. b) Chứng minh rằng mặt phẳng (MNK) song song với mặt phẳng (SAD). c) Gọi I và J lần lượt là trọng tâm các tam giác ABD, tam giác SBC. Chứng minh rằng IJ song song với mặt phẳng (SAB). + Cho hai đường thẳng a, b phân biệt cùng song song với một mặt phẳng. Khi đó: A. chưa kết luận được vị trí tương đối của a và b. B. a và b chéo nhau. C. a và b cắt nhau. D. a và b song song với nhau.