Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT Quảng Ngãi

Nội dung Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2021 - 2022 sở GD ĐT Quảng Ngãi Đề tuyển sinh THPT môn Toán năm 2021 - 2022 sở GD ĐT Quảng Ngãi Cảm ơn quý thầy cô và các em học sinh đã quan tâm đến đề tuyển sinh lớp 10 THPT môn Toán năm học 2021 - 2022 của sở GD&ĐT Quảng Ngãi. Đề thi sẽ được tổ chức vào thứ Sáu ngày 04 tháng 06 năm 2021. Dưới đây là một số câu hỏi mẫu trích từ đề thi: + Cho phương trình (ẩn x): x^2 - 2(m + 2)x + m^2 + 7 = 0. Hãy tìm giá trị của m để phương trình có 2 nghiệm phân biệt và tính tổng bình phương của hai nghiệm đó. + Một người đi xe đạp từ A đến B trên đoạn đường gồm đoạn lên dốc, đoạn bằng phẳng và đoạn xuống dốc. Hãy tính vận tốc lúc lên dốc và lúc xuống dốc biết rằng tổng thời gian di chuyển là 130 phút. + Trong một đường tròn có tâm là O và bán kính là R, điểm S nằm bên ngoài đường tròn. Chứng minh rằng 4 điểm S, O, A, B cùng thuộc một đường tròn và tính độ dài đoạn thẳng AB khi d = 2R. Những câu hỏi này không chỉ giúp bạn ôn tập kiến thức mà còn giúp bạn rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Chúc quý thí sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT TP Hồ Chí Minh : + Cửa hàng A niêm yết giá một bông hồng là 15000 đồng. Nếu khách hàng mua nhiều hơn 10 bông thì từ bông thứ 11 trở đi, mỗi bông được giảm 10% trên giá niêm yết. Nếu mua nhiều hơn 20 bông thì từ bông thứ 21 trở đi, mỗi bông được giảm thêm 20% trên giá đã giảm. Nếu khách hàng mua 30 bông hồng tại cửa hàng A thì phải trả bao nhiêu tiền? Bạn Thảo đã mua một số bông hồng tại cửa hàng A với số tiền là 555 000 đồng. Hỏi bạn Thảo đã mua bao nhiêu bông hồng? + Chị Lan đun sôi nước bằng ấm điện. Biết rằng mối liên hệ giữa công suất hao phí P(W) của ấm điện và thời gian đun t (giây) được mô hình hóa bởi một hàm số bậc nhất có dạng P = at + b và có đồ thị như hình bên. a) Hãy xác định các hệ số a và b. b) Nếu đun nước với công suất hao phí là 105(W) thì thời gian đun là bao lâu? + Bạn Nam cần chuẩn bị một số hộp nước trái cây có lượng nước trong mỗi hộp là 1,2 lít. Biết rằng buổi tiệc sinh nhật có 14 người (đã bao gồm Nam). Nếu mỗi người trung bình uống 3 ly nước trái cây và lượng nước rót bằng 90% thể tích ly thì bạn Nam cần chuẩn bị ít nhất bao nhiêu hộp nước trái cây? Biết 1 lít = 1000 cm3.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào 07/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Phước : + Cho p là số nguyên tố lớn hơn 3. Chứng minh (p – 1)(p + 1) chia hết cho 24. + Cho đoạn thẳng AB và C là điểm nằm trên đoạn AB sao cho BC > AC. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, vẽ nửa đường tròn đường kính AB và nửa đường tròn đường kính BC. Lấy điểm M thuộc nửa đường tròn đường kính BC (M khác B, M khác C). Kẻ MH vuông góc với BC (H thuộc BC), đường thẳng MH cắt nửa đường tròn đường kính AB tại K. Hai đường thẳng AK và CM cắt nhau tại E. a) Chứng minh tứ giác BMKE nội tiếp và BE2 = BA.BC. b) Từ C kẻ CN vuông góc với AB (N thuộc nửa đường tròn đường kính AB), gọi P là giao điểm của NK và CE. Chứng minh rằng tâm đường tròn nội tiếp của các tam giác BNE và PNE cùng nằm trên đường thẳng BP. + Cho một bảng gồm 2023 hàng, 2023 cột. Các hàng được đánh số từ 1 đến 2023 từ trên xuống dưới; các cột đánh số từ 1 đến 2023 từ trái qua phải. Viết các số tự nhiên liên tiếp 0, 1, 2, … vào các ô của bảng theo đường chéo zic-zắc (như hình vẽ bên). Hỏi số 2024 được viết ở hàng nào, cột nào? Vì sao?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT TP Hồ Chí Minh : + Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi J là giao điểm của AI và DE; K là trung điểm của AB. a) Chứng minh tứ giác BIJD nội tiếp. b) Gọi M là giao điểm của KI và AC, N là giao điểm của AH và ED. c) Gọi Q là giao điểm của DI và EF, P là trung điểm của BC. Chứng minh ba điểm A, P, Q thẳng hàng. + Cho đường tròn tâm O nội tiếp hình thoi ABCD. Gọi E, F, G, H là các điểm lần lượt thuộc các cạnh AB, BC, CD, DA sao cho EF, GH cùng tiếp xúc với (O). a) Chứng minh CG·AH = AO2. b) Chứng minh EH song song FG. + Xét các số nguyên a < b < c thỏa mãn n = a3 + b3 + c3 − 3abc là số nguyên tố. a) Chứng minh: a < 0. b) Tìm tất cả các số nguyên dương a, b, c (a < b < c) sao cho n là ước của 2023.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán & Tin học) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Định : + Cho phương trình bậc hai: x2 + 2(m − 1)x − 2m = 0 (m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m. Tìm các giá trị của m để hai nghiệm x1, x2 thoả |x1 + 1| = |x2 + 1|. + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB > AC. Các tiếp tuyến tại B, C của (O) cắt nhau tại P, đường thẳng AP cắt đường tròn (O) tại Q (khác A). Gọi M là trung điểm BC. Kẻ đường cao AH của tam giác ABC. 1. Chứng minh tứ giác BOCP nội tiếp và HAB = 90° – 1/2.AOC. 2. Chứng minh HAB = OAC và QB/MC = AB/AM. 3. Gọi D, E, F lần lượt là hình chiếu vuông góc của Q lên BC, CA, AB. Chứng minh rằng D là trung điểm EF. + Cho hình vuông có cạnh bằng 20. Bên trong hình vuông này chọn 2023 điểm phân biệt (không nằm trên các cạnh của hình vuông). Xét tập hợp A có 2027 điểm gồm 4 đỉnh của hình vuông và 2023 điểm đã chọn. Chứng minh rằng tồn tại ít nhất một tam giác có 3 đỉnh thuộc A với diện tích nhỏ hơn 1/10.