Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập nguyên hàm, tích phân và ứng dụng - Diệp Tuân

Tài liệu gồm 301 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán trắc nghiệm nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3), các bài tập trong tài liệu đầy đủ các mức độ nhận thức: nhận biết (NB), thông hiểu (TH), vận dụng (VD) và vận dụng cao (VDC). Khái quát nội dung tài liệu bài tập nguyên hàm, tích phân và ứng dụng – Diệp Tuân: BÀI 1 . NGUYÊN HÀM. Dạng 1. Tìm họ nguyên hàm của các hàm cơ bản. Dạng 2. Sử dụng các kỹ thuật đặc biệt để tìm họ nguyên hàm của các hàm phức tạp. + Kỹ thuật 1. Nhân đa thức để tìm họ nguyên hàm có dạng tích của các đa thức. + Kỹ thuật 2. Sử dụng công thức lũy thừa để tìm họ nguyên hàm căn thức. + Kỹ thuật 3. Sử dụng công thức cộng lượng giác để tìm họ nguyên hàm của tích của các hàm lượng giác. + Kỹ thuật 4. Sử dụng công thức hạ bậc để tìm họ nguyên hàm của các hàm lượng giác có mũ bậc chẵn. + Kỹ thuật 5. Sử dụng kỹ thuật tách hạng tử, nhóm hạng tử, thêm bớt hạng tử để tìm họ nguyên hàm của các hàm phân thức hữu tỉ. BÀI 2 . CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM CƠ BẢN. Dạng 1. Phương pháp đổi biến số. Dạng 2. Phương pháp từng phần. + Loại 1. P(x) nhân sinx hoặc cosx trong đó P(x) là đa thức. + Loại 2. P(x) nhân e^(ax + b) trong đó P(x) là đa thức. + Loại 3. P(x) nhân ln(mx +  n) trong đó P(x) là đa thức. + Loại 4. e^x nhân sinx hoặc cosx. + Loại 5. Đổi biển rồi từng phần. Dạng 3. Phương pháp lấy nguyên hàm hai vế (tích phân hàm ẩn). [ads] BÀI 3 . TÍCH PHÂN. Dạng 1. Tính tích phân cơ bản. Dạng 2. Phương pháp đổi biến loại 1. Dạng 3. Phương pháp đổi biến loại 2. + Loại 1. Đổi biến hàm căn thức. + Loại 2. Đổi biến hàm lượng giác. + Loại 3. Đổi biến một số tích phân đặc biệt. Dạng 4. Phương pháp từng phần. + Bài toán 1. Tích phân từng phần thuộc dạng f(x) nhân ln(g(x)). + Bài toán 2. Tích phân từng phần thuộc dạng f(x) nhân sinax hoặc cosax hoặc e^ax. + Bài toán 3. Tích phân từng phần thuộc dạng e^ax nhân sinax hoặc cosax. BÀI 4 . ỨNG DỤNG TÍNH DIỆN TÍCH – THỂ TÍCH. Dạng 1. Tính diện tích hình phẳng giới hạn bởi một đồ thị hàm số y = f(x), trục hoành Ox và hai đường thẳng x = a, x = b. Dạng 2. Tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x = b. Dạng 3. Tính diện tích hình phẳng giới hạn bởi ba đồ thị hàm số. Dạng 4. Tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số có dạng x = f(y) và hai đường thẳng y = a, y = b. Dạng 5. Tính thể tích vật thể giới hạn bởi một đồ thị hàm số có dạng y = f(x), x = a, x = b và trục hoành y = 0 khi quay quanh trục hoành (Ox). Dạng 6. Tính thể tích vật thể giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x), x = a, x = b khi quay quanh trục hoành. Dạng 7. Tính thể tích vật thể giới hạn bởi hai đồ thị hàm số x = f(y), x = g(y), y = a, y = b khi quay quanh trục tung Oy. Dạng 8. Ứng dụng trong thực tế tính vận tốc, quãng đường, diện tích và thể tích vật thể.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm ôn tập học kỳ 2 môn Toán 12 - Lê Văn Nam
Tài liệu gồm 49 trang với tóm tắt lý thuyết và bài tập trắc nghiệm thuộc các nội dung trong chương trình học kỳ 2 môn Toán 12: + Nguyên hàm – tích phân và ứng dụng + Số phức + Phương pháp tọa độ trong không gian
Bài tập trắc nghiệm Toán 12 - Nguyễn Văn Lực (Tập 1)
Tổng cộng 1028 câu trắc nghiệm phần Giải tích 12 có đáp án, bao gồm: + Phần 1. Ứng dụng đạo hàm (342 câu) + Phần 2. Hàm số lũy thừa – mũ – loogarit (248 câu) + Phần 3. Nguyên hàm – Tích phân – Ứng dụng (199 câu) + Phần 4. Số phức (239 câu) Toán 12 Ghi chú : Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]
Bài tập trắc nghiệm Hình học 12 - Huỳnh Chí Dũng
NỘI DUNG TÀI LIỆU Chuyên đề 1: Hình giải tích trong không gian 1.1. Các phép toán cơ bản 1.2. Phương trình mặt cầu 1.3. Phương trình mặt phẳng + 1.3.1. Viết phương trình mặt phẳng + 1.3.2. Vị trí tương đối hai mặt phẳng + 1.3.3. Khoảng cách – hình chiếu vuông góc + 1.3.4. Góc giữa hai mặt phẳng 1.4. Phương trình đường thẳng + 1.4.1. Lập phương trình đường thẳng + 1.4.2. Vị trí tương đối đường thẳng – mặt phẳng + 1.4.3. Góc – khoảng cách và các vấn đề khác 1.5. Các bài toán tổng hợp Chuyên đề 2: Thể tích khối đa diện 2.1. Thể tích khối đa diện 2.2. Mặt nón- mặt trụ- mặt cầu
Bài tập trắc nghiệm Giải tích 12 - Huỳnh Chí Dũng
NỘI DUNG TÀI LIỆU Chuyên đề 1: Khảo sát hàm số và các bài toán liên quan 1.1. Tính đơn điệu của hàm số 1.2. Cực trị hàm số 1.3. Giá trị lớn nhất – giá trị nhỏ nhất 1.4. Tiệm cận 1.5. Khảo sát và vẽ đồ thị hàm số -tương giao hai đồ thị hàm số 1.6. Tương giao 2 đồ thị – tiếp tuyến và bài tập tổng hợp Chuyên đề 2: Hàm số mũ – hàm số logarit 2.1. Các phép toán cơ bản 2.2. Khảo sát và vẽ hàm số mũ – lũy thừa – logarit 2.3. Phương trình (bpt –hpt) mũ – logarit Chuyên đề 3: Nguyên hàm – tích phân – ứng dụng 3.1. Nguyên hàm – tích phân 3.1.1. Nguyên hàm – tích phân cơ bản 3.1.2. Nguyên hàm – tích phân lượng giác 3.1.3. Nguyên hàm – tích phân hữu tỉ & căn thức 3.1.4. Nguyên hàm – tích phân từng phần 3.1.5. Nguyên hàm – tích phân : đổi biến số 3.1.6. Nguyên hàm – tích phân hàm trị tuyệt đối 3.2. Ứng dụng tích phân: Tính diện tích – thể tích Chuyên đề 4: Số phức 4.1. Biểu diễn hình học của số phức (cơ bản) 4.2. Các phép toán cơ bản trên tập phức 4.3. Giải phương trình trên tập phức 4.4. Biểu diễn hình học của số phức (nâng cao)