Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán năm 2015 2016 phòng GD ĐT Ý Yên Nam Định

Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2015 2016 phòng GD ĐT Ý Yên Nam Định Bản PDF - Nội dung bài viết Đề khảo sát HSG Toán lớp 7 năm 2015 - 2016 phòng GD&ĐT Ý Yên - Nam Định Đề khảo sát HSG Toán lớp 7 năm 2015 - 2016 phòng GD&ĐT Ý Yên - Nam Định Sytu xin gửi đến quý thầy cô và các em học sinh lớp 7 đề khảo sát HSG Toán lớp 7 năm 2015 - 2016 từ phòng GD&ĐT Ý Yên - Nam Định. Đề thi bao gồm câu hỏi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề: Trong tam giác ABC đều, BD là đoạn thẳng sao cho BD = AB. Khi kẻ đường thẳng qua D vuông góc với AB cắt cạnh BC tại E và kẻ tiếp tuyến từ E đến AC cắt AC tại F. Hãy chứng minh rằng DF song song với AC và tam giác DEF là tam giác đều. Đề cho đa thức Q(x) = ax^3 + bx^2 + cx + d. Biết rằng Q(x) chia hết cho 3 với mọi x. Hãy chứng minh rằng các hệ số a, b, c, d đều chia hết cho 3. Số M được chia thành ba phần tỉ lệ nghịch với 3, 5, 6. Biết rằng tổng các lập phương của ba phần đó là 10728. Hãy tìm số M. Đề khảo sát này đánh giá khả năng suy luận và giải quyết vấn đề của học sinh lớp 7 thông qua các bài toán phức tạp. Hy vọng rằng đề thi này sẽ giúp các em ôn tập và củng cố kiến thức một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Trực Ninh - Nam Định
Đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định : + Cho ABC vuông tại A có B 2C. Kẻ AH BC (H BC). Trên tia HC lấy D sao cho HD HB. Từ C kẻ đường thẳng CE vuông góc với đường thẳng AD (E AD). a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh DH DE HE AC. c) So sánh 2 HE và 2 2 4 BC AD. d) Gọi K giao AH và CE, lấy điểm I bất kì thuộc đoạn thẳng HE I khác H; I khác E. Chứng minh 3 2 AC IA IK IC. + Chứng minh đa thức sau không có nghiệm. + Chứng minh rằng 2021 10 539 9 có giá trị là một số tự nhiên.
Đề thi HSG Toán 7 năm 2020 - 2021 trường THCS Kim Đồng - Quảng Nam
Ngày … tháng … năm 2021, trường THCS Kim Đồng, thành phố Hội An, tỉnh Quảng Nam tổ chức kỳ thi khảo sát học sinh giỏi lớp 7 môn Toán năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 trường THCS Kim Đồng – Quảng Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút.
Đề thi Olimpic Toán 7 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olimpic Toán 7 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi Olimpic Toán 7 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Ba thửa ruộng hình chữ nhật A, B, C có cùng diện tích. Chiều rộng của 3 thửa ruộng A, B, C lần lượt tỷ lệ với 3 ; 4 ; 5. Chiều dài của thửa ruộng A nhỏ hơn tổng chiều dài của 2 thửa ruộng B và C là 35m. Tính chiều dài mỗi thửa ruộng. + Cho ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kỳ trên đoạn BM. H, I thứ tự là hình chiếu của B, C trên đường thẳng AD. Chứng minh rằng: a/ BH = AI. b/ BH2 + CI2 có giá trị không đổi. c/ IM là phân giác của DIC. + Cho ABC cân tại A có A 3C. Vẽ tia Cx sao cho CA là tia phân giác của BCx Cx cắt BA tại D. Trong hình vẽ có bao nhiêu tam giác cân? Vì sao?
Đề thi HSG cấp huyện Toán 7 năm 2020 - 2021 phòng GDĐT Lương Tài - Bắc Ninh
Đề thi HSG cấp huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2021.