Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập những bài phương trình, hệ phương trình hay - Nguyễn Đức Thắng

Những bài phương trình, hệ phương trình đẹp và hay là niềm đam mê một thời của nhiều học sinh cấp 2 và cấp 3. File này mình tuyển chọn và trình bày lại những bài phương trình, hệ phương trình mà mình câm thấy hay! Mình lấy các đề toán và lời giải từ nhiều nguồn: Về đề bài: + Các bài toán trong Nhóm Toán, Nhóm LIKE, Nhóm Giao lưu Toán (Diễn đàn Toán học BoxMath), Nhóm Học tập + Các bài toán trong các file sách của BoxMath, K2pi, VMF, Mathscope [ads] + Các bài toán trong sách Tư duy sáng tạo tìm tòi lời giải PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH ĐẠI SỐ VÔ TỈ – tác giả Lê Văn Đoàn + Những điều cần biết Luyện thị Quốc gia Kỹ thuật giải nhanh HỆ PHƯƠNG TRÌNH – tác giả Đặng Thành Nam + Các bài toán trong đề thi thử THPTQG Về lời giải: + Các lời giải của thầy Nguyễn Tiến Trung, thầy Trần Quốc Thịnh, Dương Văn Vũ, Phùng Quyết Thắng, Phong Hồng, Bùi Hùng Vương, Sơn Huỳnh Phú, Châu Thanh Hải + Các lời giải của bạn Nguyễn Văn Lợi, Hùng Nolan, Ngô Văn Tiệp, Nguyễn Nam, Trần Lương, Peter Thái Học + Một vài bài là lời giải của mình Chúc các bạn học tốt!

Nguồn: toanmath.com

Đọc Sách

Khai thác tính chất hàm đặc trưng để giải PT - HPT - BPT - Lê Phương Thúy
Trong một vài năm gần đây, việc sử dụng hàm đặc trưng để giải phương trình, bất phương trình và hệ phương trình trong các đề thi đại học, cao đẳng và trong các đề thi học sinh giỏi được sử dụng khá phổ biến. Sáng kiến kinh nghiệm Khai thác tính chất hàm đặc trưng để giải phương trình, bất phương trình và hệ phương trình đại số nhằm giúp học sinh nắm vững phương pháp sử dụng hàm đặc trưng trong giải toán và kết hợp phương pháp này với các phương pháp khác, linh hoạt trong các cách xử lí để giải quyết các dạng toán. Nội dung tài liệu : Phần 1: Thông tin chung về sáng kiến Phần 2: Mô tả sáng kiến 1. Cơ sở lí thuyết 2. Khai thác tính chất hàm đặc trưng để giải phương trình và bất phương trình 2.1 Khai thác tính chất hàm đặc trưng để giải phương trình 2.2 Khai thác tính chất hàm đặc trưng để giải bất phương trình 3. Khai thác tính chất hàm đặc trưng để giải hệ phương trình đại số 4. Bài tập tự luyện Phần 3: Kết luận [ads] Trong phần 2, ở mục 1 nêu lên cơ sở lí thuyết để sử dụng trong bài viết. Mục 2.1 là áp dụng khai thác tính chất hàm đặc trưng để giải phương trình đại số, gồm 12 ví dụ, mức độ khó được tăng dần, sau các bài tập cụ thể sẽ đưa ra được các kĩ năng biến đổi, từ đó học sinh sẽ vận dụng linh hoạt trong các bài tập khác. Mục 2.2 là áp dụng để giải các bất phương trình, gồm 8 ví dụ. Khi đã nắm bắt được các kĩ năng ở mục 2 thì sang mục 3, sẽ giải quyết được cho các bài tập về hệ phương trình, qua đó ta sẽ thấy được việc kết hợp, sáng tạo giữa phương pháp sử dụng hàm đặc trưng với các phương pháp khác như phương pháp đưa về phương trình tích, phương pháp hàm số, phương pháp lượng giác hóa, phương pháp đánh giá …. nhằm hình thành cho học sinh các kĩ năng biến đổi, khả năng so sánh, phân tích và tổng hợp tốt, đồng thời có một tư duy sáng tạo, linh hoạt khi giải toán. Giúp các em có nhiều hưng phấn, say mê tìm tòi nghiên cứu với môn toán học. Và cuối cùng, phần 3 là kết luận và hướng phát triển của đề tài.
Kĩ năng tìm biểu thức liên hợp hoặc nhân tử của phương trình vô tỉ - Vũ Hồng Phong
Tài liệu gồm 206 trang hướng dẫn kỹ năng tìm biểu thức liên hợp hoặc nhân tử của phương trình vô tỉ để giải các phương trình vô tỉ, tài liệu được biên soạn bởi thầy Vũ Hồng Phong. Chuyên đề 1 . Phương trình vô tỉ không dùng Casio hỗ trợ Chuyên đề này gồm các phương trình có nghiệm đẹp ta hoàn toàn nhẩm được. Dù vất vả trong việc nhẩm và tính toán nhưng giúp chúng ta tiến bộ khi học môn toán. I. Các phương trình tìm biểu thức liên hợp không dùng Casio Một số ví dụ ngoài cách nhân liên hợp có thể làm theo hướng đưa về tích hoặc tìm tổng và hiệu các căn rồi tìm từng căn theo x. II. Các phương trình tìm nhân tử không dùng Casio Chuyên đề 2 . Tìm biểu thức liên hợp nhờ sự hỗ trợ của máy tính Casio Chuyên đề này xin được giới thiệu các phương trình dùng máy tính cầm tay tìm biểu thức liên hợp có dạng ax^2 + bx + c – (P(x))^(1/k) với a, b, c là các số nguyên. Chuyên đề 3 . Tìm nhân tử của phương trình dùng Casio Chuyên đề 4 . Phương pháp thế trong thủ thuật sử dụng máy tính Casio để tìm nhân tử chung hoặc tìm biểu thức trong nhân liên hợp khi giải phương trình vô tỉ Một kĩ năng rất hữu ích có thể giúp ta giải được một phương trình vô tỉ là kĩ năng tìm nhân tử chung hoặc tìm biểu thức trong nhân liên hợp. Đôi khi việc tìm ra các biểu thức đó là rất khó khăn nếu ta không có máy tính cầm tay trợ giúp. Bài viết này xin được giới thiệu kĩ thuật dùng máy tính cầm tay tìm nhân tử chung hoặc biểu thức để ta xử lí nhân liên hợp có dạng ax^2 + bx + c – (P(x))^(1/k) với a, b, c là các số nguyên. Chuyên đề 5 . Phương pháp cộng dùng trong thủ thuật máy tính cầm tay trợ giúp giải phương trình vô tỉ [ads] Lưu ý khi sử dụng tài liệu : + Bài viết gồm 5 chuyên đề: chuyên đề 1 là các phương trình không dùng Casio, chuyên đề 2 và 3 là các thí dụ dùng máy tính Casio có hướng dẫn sơ lược, chuyên đề 4 và 5 là lí thuyết hướng dẫn chi tiết cách dùng máy tính Caiso tìm biểu thức liên hợp hoặc tìm nhân tử cần xuất hiện trong phương trình của chuyên đề 2 và 3, trong đó có chuyên đề phụ một cách tạo ra một phương trình tích từ các biểu thức phù hợp. +Do có nhiều phương trình mới lạ và phức tạp nên bài viết không là tài liệu để ôn tập cho các kì thi. +Các phương trình trong bài viết có nghiệm là nghiệm của phương trình bậc 3,bậc 4 nên nó phức tạp hơn các dạng phương trình khác. +Các phương trình chưa được sắp xếp thành hệ thống hợp lí và có thể có sai sót. +Tài liệu cung cấp một số ý tưởng để tạo ra các phương trình vô tỷ đưa về dạng tích.
Tuyển tập hệ phương trình - Mẫn Ngọc Quang
Tài liệu gồm 126 trang hướng dẫn giải chi tiết các bài toán hệ phương trình với đầy đủ các dạng toán thương gặp trong chương trình Toán 10. Các bài toán được phân dạng dựa theo phương pháp giải, bao gồm 3 dạng sau: 1. Giải hệ phương trình bằng phương pháp hàm số 2. Phương pháp nhân liên hợp 3. Phương pháp đặt ẩn phụ [ads]
Chuyên đề hệ phương trình - hệ bất phương trình - Nguyễn Tất Thu
Chuyên đề hệ phương trình – hệ bất phương trình gồm 97 trang do tác giả Nguyễn Tất Thu biên soạn được trích trong cuốn sách Cẩm nang ôn luyện thi Đại học Toán. Chuyên đề được phân loại thành các chủ đề sau: + Bài 1. Hệ phương trình bậc nhất hai ẩn + Bài 2. Hệ phương trình đối xứng loại 1 + Bài 3. Hệ phương trình đối xứng loại 2 + Bài 4. Hệ phương trình đẳng cấp + Bài 5. Hệ phương trình không mẫu mực Mỗi phần đều có tóm tắt các lí thuyết, ví dụ minh họa có giải chi tiết và phần bài tập vận dụng có hướng dẫn giải. [ads]