Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian

Tài liệu gồm 86 trang được biên soạn bởi thầy Nguyễn Văn Vinh và thầy Lê Đình Hùng (OMEGA Groups) hướng dẫn giải các dạng toán thường gặp trong chuyên đề phương pháp tọa độ trong không gian (Hình học 12 chương 3). BÀI 1 : HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Hiểu rõ lý thuyết, nắm vững các công thức trong tọa độ không gian cùng với các trường hợp vận dụng của từng công thức. BÀI 2 : PHƯƠNG TRÌNH MẶT PHẲNG. Các dạng toán trong bài này thường yêu cầu viết phương trình mặt phẳng, do vậy ta cần nắm vững các bài toán viết phương trình mặt phẳng kèm theo các điều kiện sau: + Mặt phẳng (α) qua M và song song với (β). + Mặt phẳng (α) đi qua ba điểm A, B, C. + Mặt phẳng (α) đi qua M và vuông góc với đường thẳng d. + Mặt phẳng (α) chứa đường thẳng d và vuông góc với (β). + Mặt phẳng (α) chứa đường thẳng d và song song với đường thẳng d’ (d và d’ chéo nhau). + Mặt phẳng (α) đi qua M và chứa đường thẳng d. + Mặt phẳng (α) chứa 2 đường thẳng cắt nhau d và d’. + Mặt phẳng (α) chứa 2 đường thẳng song song d và d’. + Mặt phẳng (α) là mặt phẳng trung trực của đoạn AB. + Mặt phẳng (α) vuông góc với 2 mặt phẳng (β) và (P) ((β) và (P) cắt nhau). + Mặt phẳng (α) chứa 2 điểm M, N và tạo với (β) 1 góc là φ. [ads] BÀI 3 : PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN. Nắm vững lý thuyết về tính tương đối giữa đường với đường và đường với mặt kèm theo các phương pháp xác định. Thuộc các công thức tính khoảng cách và góc. Các bài tập trong bài này thường yêu cầu viết phương trình đường thẳng, tìm giao điểm hoặc hình chiếu … ta cần nắm vững các dạng toán viết phương trình đường thẳng sau: + Đường thẳng đi qua 2 điểm. + Đường thẳng đi qua 1 điểm và vuông góc với mặt phẳng cho trước. + Đường thẳng đi qua 1 điểm và song song với 1 đường thẳng cho trước. + Đường thẳng đi qua 1 điểm và vuông góc với 2 đường thẳng cho trước. + Đường thẳng vuông góc và cắt đường thẳng d’ và song song với 1 mặt phẳng cho trước. + Đường thẳng đi qua 1 điểm và vuông góc với 1 đường thẳng cho trước. + Đường thẳng đi qua 1 điểm, cắt đường thẳng a và vuông góc với đường thẳng b. + Đường thẳng đi qua 1 điểm và cắt 2 đường thẳng cho trước. + Đường thẳng vuông góc với mặt phẳng (α) và cắt 2 đường thẳng a và b. + Đường thẳng là hình chiếu của d’ lên mặt phẳng (α). + Đường thẳng d qua M (d và M cùng nằm trong (α) và vuông góc với đường thẳng a (a không thuộc (α)). + Đường thẳng là đường vuông góc chung của 2 đường a và a’ cho trước. BÀI 4 : PHƯƠNG TRÌNH MẶT CẦU. Nắm rõ vị trí tương đối giữa mặt cầu với mặt phẳng và mặt cầu với đường thẳng kèm theo các điều kiện xác định. Các bài tập trong bài này đa số yêu cầu viết phương trình mặt cầu, ta cần nắm vững các bài toán viết phương trình mặt cầu sau: + Mặt cầu có tâm I và đi qua điểm A. + Mặt cầu nhận AB làm đường kính. + Mặt cầu đi qua 3 điểm A, B, C và có tâm I(a;b;c) thuộc mặt phẳng (α). + Mặt cầu ngoại tiếp tứ diện ABCD. + Mặt cầu có tâm I và tiếp xúc với mặt phẳng (α). + Mặt cầu có tâm I và cắt mặt phẳng (α) theo giao tuyến là đường tròn có bán kính r. + Mặt cầu có tâm I và tiếp xúc với đường thẳng a. + Mặt cầu có tâm I và tiếp xúc ngoài mặt cầu có tâm I’, bán kính R’. + Mặt cầu có tâm I tiếp xúc trong với mặt cầu có tâm I’, bán kính R’. + Mặt cầu có tâm I cắt đường thẳng a tại A và B, sao cho AB = m. BÀI 5 : CÁC BÀI TOÁN CỰC TRỊ TRONG TỌA ĐỘ KHÔNG GIAN. Ngoài các bài toán thường gặp như viết phương trình mặt phẳng, đường thẳng, mặt cầu, xác định giao điểm, hình chiếu, vị trí tương đối … chuyên đề này còn xuất hiện các bài toán khó liên quan đến chủ đề cực trị. Kể từ khi chuyển hình thức thi toán sang trắc nghiệm, bài toán cực trị xuất hiện ngày càng nhiều và thường có mặt trong các đề thi tuyển sinh nhằm tăng thêm tính phân loại, chọn lọc học sinh khá giỏi cho các trường, các ngành ở tốp cao. Do vậy, đây là dạng toán quan trọng mà các bạn học sinh muốn vô các ngành có điểm cao cần phải nắm được. + Cho các điểm A, B, C … Tìm điểm H thuộc mặt phẳng (α) hoặc đường thẳng d sao cho nó thỏa mãn điều kiện để các biểu thức sau có giá trị lớn nhất hoặc nhỏ nhất. + Cho 2 điểm A và B không thuộc d, tìm điểm M thuộc mặt phẳng (α) sao cho MA + MB đạt giá trị nhỏ nhất. + Cho 2 điểm A và B không thuộc d, tìm điểm M thuộc d sao cho MA + MB đạt giá trị nhỏ nhất. + Cho 2 điểm A và B, viết phương trình mặt phẳng (α) qua B sao cho (α) cách A một khoảng lớn nhất. + Cho điểm A và đường thẳng d không đi qua A, viết phương trình mặt phẳng (α) qua d sao cho (α) cách A một khoảng lớn nhất. + Cho mặt phẳng (α) và điểm B thuộc (α), viết phương trình đường thẳng a chứa trong (α), đi qua B và cách điểm A không thuộc (α) một khoảng lớn nhất và nhỏ nhất. + Cho điểm A thuộc mặt phẳng (α) và đường thẳng d không song song hoặc nằm trên (α), viết phương trình đường thẳng a chứa trong (α) đi qua A và cách d một khoảng lớn nhất. + Cho hai đường thẳng a và b không song song nhau, viết phương trình mặt phẳng (α) chứa a và tạo với b một góc lớn nhất. + Cho điểm A thuộc mặt phẳng (α) và đường thẳng a không song song hoặc nằm trong (α), viết phương trình đường thẳng b chứa trong (α) và qua A sao cho tạo với a một góc lớn nhất và nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm VD - VDC hình học Oxyz - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Hình học 12 chương 3 – phương pháp tọa độ trong không gian Oxyz, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề hình học Oxyz. Tài liệu trắc nghiệm VD – VDC hình học Oxyz – Đặng Việt Đông gồm 144 trang với các bài tập trắc nghiệm hình học Oxyz ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về hình học Oxyz được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC hình học Oxyz – Đặng Việt Đông: Dạng toán 1. Hệ tọa độ trong không gian. Dạng toán 2. Mặt phẳng trong không gian. Dạng toán 3. Góc, khoảng cách, vị trí tương đối với mặt phẳng. Dạng toán 4. Đường thẳng trong không gian. Dạng toán 5. Góc, khoảng cách, vị trí tương đối với đường thẳng. Dạng toán 6. Mặt cầu trong không gian. Dạng toán 7. Min – max trong hình học Oxyz. + Min – max với mặt phẳng. + Min – max với đường thẳng. + Min – max với mặt cầu. Dạng toán 8. Tọa độ hóa hình học không gian.
Các dạng toán phương trình đường thẳng và một số bài toán liên quan
Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình đường thẳng và một số bài toán liên quan đến phương trình đường thẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan: PHẦN A . CÂU HỎI Dạng toán 1. Xác định VTCP (Trang 2). Dạng toán 2. Xác định phương trình đường thẳng (Trang 4). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 4). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 6). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 10). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 11). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 14). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 14). + Dạng toán 3.2 Bài toán cực trị (Trang 17). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 19). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 19). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 20). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 22). + Dạng toán 4.4 Bài toán cực trị (Trang 25). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 30). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 32). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 32). + Dạng toán 7.1 Bài toán tìm điểm (Trang 32). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 34). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 34). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 35). + Dạng toán 7.5 Bài toán cực trị (Trang 37). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTCP (Trang 40). Dạng toán 2. Xác định phương trình đường thẳng (Trang 41). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 41). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 43). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 48). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 50). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 58). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 58). + Dạng toán 3.2 Bài toán cực trị (Trang 61). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 65). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 65). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 67). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 69). + Dạng toán 4.4 Bài toán cực trị (Trang 78). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 95). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 97). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 99). + Dạng toán 7.1 Bài toán tìm điểm (Trang 99). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 102). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 104). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 106). + Dạng toán 7.5 Bài toán cực trị (Trang 112).
Các dạng toán phương trình mặt phẳng và một số bài toán liên quan
Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình mặt phẳng và một số bài toán liên quan đến phương trình mặt phẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình mặt phẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình mặt phẳng và một số bài toán liên quan: Phần A . CÂU HỎI Dạng toán 1. Xác định VTPT (Trang 2). Dạng toán 2. Xác định phương trình mặt phẳng (Trang 3). + Dạng toán 2.1 Xác định phương trình mặt phẳng cơ bản (Trang 3). + Dạng toán 2.2 Xác định phương trình mặt phẳng khi biết yếu tố vuông góc (Trang 4). + Dạng toán 2.3 Xác định phương trình mặt phẳng khi biết yếu tố song song (Trang 7). + Dạng toán 2.4 Xác định phương trình mặt phẳng đoạn chắn (Trang 8). Dạng toán 3. Một số bài toán liên quan điểm với mặt phẳng (Trang 10). + Dạng toán 3.1 Điểm thuộc mặt phẳng (Trang 10). + Dạng toán 3.2 Phương trình mặt phẳng qua 3 điểm (Trang 11). + Dạng toán 3.3 Khoảng cách từ điểm đến mặt (Trang 11). + Dạng toán 3.4 Cực trị (Trang 13). Dạng toán 4. Một số bài toán liên quan giữa mặt phẳng – mặt cầu (Trang 16). + Dạng toán 4.1 Viết phương trình mặt cầu (Trang 16). + Dạng toán 4.2 Vị trí tương đối, giao tuyến (Trang 17). + Dạng toán 4.3 Cực trị (Trang 20). Dạng toán 5. Một số bài toán liên quan giữa mặt phẳng – mặt phẳng (Trang 21). + Dạng toán 5.1 Vị trí tương đối, khoảng cách, giao tuyến (Trang 21). + Dạng toán 5.2 Góc của 2 mặt phẳng (Trang 23). Dạng toán 6. Một số bài toán liên khác quan điểm – mặt phẳng – mặt cầu (Trang 24). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTPT (Trang 26). Dạng toán 2. Xác định phương trình mặt phẳng (Trang 27). + Dạng toán 2.1 Xác định phương trình mặt phẳng cơ bản (Trang 27). + Dạng toán 2.2 Xác định phương trình mặt phẳng khi biết yếu tố vuông góc (Trang 27). + Dạng toán 2.3 Xác định phương trình mặt phẳng khi biết yếu tố song song (Trang 31). + Dạng toán 2.4 Xác định phương trình mặt phẳng đoạn chắn (Trang 33). Dạng toán 3. Một số bài toán liên quan điểm với mặt phẳng (Trang 36). + Dạng toán 3.1 Điểm thuộc mặt phẳng (Trang 36). + Dạng toán 3.2 Phương trình mặt phẳng qua 3 điểm (Trang 37). + Dạng toán 3.3 Khoảng cách từ điểm đến mặt (Trang 38). + Dạng toán 3.4 Cực trị (Trang 39). Dạng toán 4. Một số bài toán liên quan giữa mặt phẳng – mặt cầu (Trang 47). + Dạng toán 4.1 Viết phương trình mặt cầu (Trang 47). + Dạng toán 4.2 Vị trí tương đối, giao tuyến (Trang 48). + Dạng toán 4.3 Cực trị (Trang 52). Dạng toán 5. Một số bài toán liên quan giữa mặt phẳng – mặt phẳng (Trang 57). + Dạng toán 5.1 Vị trí tương đối, khoảng cách, giao tuyến (Trang 57). + Dạng toán 5.2 Góc của 2 mặt phẳng (Trang 59). Dạng toán 6. Một số bài toán liên khác quan điểm – mặt phẳng – mặt cầu (Trang 61).
Các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp
Chủ đề hệ trục tọa độ Oxyz và phương trình mặt cầu là chủ đề đầu tiên mà các em học sinh được học khi tìm hiểu chương trình Hình học 12 chương 3, đây là nội dung căn bản mà các em cần nắm vững trước khi tìm hiểu những kiến thức cao hơn. Trong đề thi THPT Quốc gia môn Toán, các câu hỏi và bài tập trắc nghiệm thuộc chủ đề hệ trục tọa độ Oxyz và phương trình mặt cầu được bắt gặp thường xuyên, các bài toán trải rộng ở nhiều mức độ nhận biết, thông hiểu, vận dụng và vận dụng bậc cao. Và để giúp các em có tài liệu tham khảo, rèn luyện, thầy Nguyễn Bảo Vương biên soạn và giới thiệu tài liệu các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp. Tài liệu gồm 46 trang với các câu hỏi và bài toán trắc nghiệm hệ trục tọa độ Oxyz và phương trình mặt cầu có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên toàn quốc. Mục lục tài liệu các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp: PHẦN A . CÂU HỎI Dạng toán 1. Tìm tọa độ điểm, véc tơ liên quan đến hệ trục tọa độ Oxyz (Trang 1). Dạng toán 2. Tích vô hướng, tích có hướng và ứng dụng (Trang 8). + Dạng toán 2.1 Tích vô hướng và ứng dụng (Trang 8). + Dạng toán 2.2 Tích có hướng và ứng dụng (Trang 9). Dạng toán 3. Mặt cầu (Trang 10). + Dạng toán 3.1 Xác định tâm, bán kính của mặt cầu (Trang 10). + Dạng toán 3.2 Viết phương trình mặt cầu (Trang 13). + Dạng toán 3.3 Một số bài toán khác (Trang 16). Dạng toán 4. Bài toán cực trị (Trang 17). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Tìm tọa độ điểm, véc tơ liên quan đến hệ trục tọa độ Oxy (Trang 19). Dạng toán 2. Tích vô hướng, tích có hướng và ứng dụng (Trang 27). + Dạng toán 2.1 Tích vô hướng và ứng dụng (Trang 27). + Dạng toán 2.2 Tích có hướng và ứng dụng (Trang 28). Dạng toán 3. Mặt cầu (Trang 31). + Dạng toán 3.1 Xác định tâm, bán kính của mặt cầu (Trang 31). + Dạng toán 3.2 Viết phương trình mặt cầu (Trang 34). + Dạng toán 3.3 Một số bài toán khác (Trang 37). Dạng toán 4. Bài toán cực trị (Trang 42 ).