Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 cấp trường năm 2017 - 2018 trường THCS Sông Trí - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán 9 cấp trường năm học 2017 – 2018 trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán 9 cấp trường năm 2017 – 2018 trường THCS Sông Trí – Hà Tĩnh : + Giả sử D là một điểm nằm trong tam giác nhọn ABC sao cho 0 ADB ACB 90 và AC BD AD BC. Chứng minh rằng 2 AB CD AC BD. + Cho tam giác ABC. Biết rằng tồn tại hai điểm M N lần lượt trên các cạnh AB BC sao cho 2 BM BN AM CN và BNM ANC. Chứng minh rằng tam giác ABC vuông? + Cho tam giác ABC vuông tại A, đường cao AH, đường phân giác AD. Biết BH = 63 cm; CH = 112 cm. Tính HD.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hải Dương
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 tỉnh Hải Dương năm 2022 - 2023 Đề thi học sinh giỏi Toán lớp 9 tỉnh Hải Dương năm 2022 - 2023 Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Hải Dương. Đề thi bao gồm 01 trang với 05 bài toán hình thức tự luận. Thời gian làm bài là 150 phút, đề thi đi kèm đáp án, lời giải chi tiết và thang điểm. Kỳ thi được tổ chức vào thứ Tư ngày 11 tháng 01 năm 2023. Trích dẫn nội dung đề học sinh giỏi Toán lớp 9 tỉnh Hải Dương năm 2022 - 2023: Giải phương trình nghiệm nguyên: x^3 - y^3 - 2y^2 - 3y - 1 = 0. Tìm số nguyên tố p sao cho 2041 - p^2 không chia hết cho 24. Cho đường tròn (O) có đường kính AB, vẽ tiếp tuyến d1 và d2 qua A và B tương ứng. Từ điểm M trên đường tròn (O), vẽ tiếp tuyến với đường tròn cắt d1 tại C và d2 tại D. Kẻ MH vuông góc với AB tại H. a) Chứng minh rằng: AD, BC, MH đồng quy tại trung điểm của MH. b) Đường tròn (O) có đường kính CD cắt đường tròn (O) tại E và F (E thuộc cung AM). Chứng minh rằng EF đi qua trung điểm của MH. Cho tam giác ABC đều cạnh a. Điểm M di chuyển trên BC, vẽ ME vuông góc AB tại E và MF vuông góc AC tại F. Tính giá trị nhỏ nhất của đoạn EF theo a. Đề thi trình bày những bài toán thú vị, đa dạng mức độ khó khăn, giúp học sinh thử thách và phát triển khả năng tư duy logic, sáng tạo trong giải quyết vấn đề.
Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Trà Ôn Vĩnh Long
Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Trà Ôn Vĩnh Long Bản PDF - Nội dung bài viết Đề thi học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GD&ĐT Trà Ôn Vĩnh Long Đề thi học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GD&ĐT Trà Ôn Vĩnh Long Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi vòng huyện môn Toán lớp 9 năm học 2022-2023 do phòng Giáo dục và Đào tạo huyện Trà Ôn, tỉnh Vĩnh Long tổ chức. Đề thi được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài 150 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn một số câu hỏi trên Đề học sinh giỏi huyện Toán lớp 9 năm 2022-2023 phòng GD&ĐT Trà Ôn - Vĩnh Long: Chứng minh rằng $2^{70} + 3^{70}$ chia hết cho 13. Tìm nghiệm nguyên của phương trình: $2(x + y) + 1 = 3xy$. Cho M bất kì trên đường tròn tâm O đường kính AB. Tiếp tuyến tại M và tại B của (O) cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt MD tại C và cắt BD tại N. Chứng minh rằng B, D, M, O cùng thuộc một đường tròn. Chứng minh DC = DN. Chứng minh AC là tiếp tuyến của đường tròn tâm O. Gọi H là chân đường vuông góc kẻ từ M xuống AB, I là trung điểm của MH. Chứng minh B, C, I thẳng hàng. Cho các số thực dương x, y, z thỏa mãn $x + 2y + 3z \geq 20$. Tìm giá trị nhỏ nhất của biểu thức $A = x + y + z + \frac{3}{x} + \frac{9}{2y} + \frac{4}{z}$. Đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng giải các bài toán phức tạp, đồng thời nắm vững kiến thức Toán lớp 9. Chúc các em thi tốt!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT thành phố Nam Định
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT thành phố Nam Định Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GDĐT thành phố Nam Định Đề học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GDĐT thành phố Nam Định Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo thành phố Nam Định. Đề thi bao gồm các câu hỏi sau: + Đề bài 1: Cho đường tròn (O) có đường kính BC. Gọi điểm A là điểm trên tiếp tuyến tại B của đường tròn đó. Vẽ dây CE của đường tròn (O) sao cho CE song song với OA, và gọi H là điểm cắt của BE và OA. a) Chứng minh rằng AE là tiếp tuyến của đường tròn (O). b) Tia AO cắt đường tròn (O) tại hai điểm F, K (trong đó F nằm giữa O và A). Chứng minh rằng: i) FCO = FCE. ii) AK.CH = KH.CA. + Đề bài 2: Đường thẳng (d) chia tam giác ABC thành hai phần có chu vi và diện tích bằng nhau. Chứng minh rằng (d) đi qua tâm của đường tròn nội tiếp tam giác ABC. + Đề bài 3: Có 6 chiếc hộp, mỗi hộp chứa một số hạt đậu lần lượt là k1, k2, k3, k4, k5, k6 sao cho k1^3 + k2^3 + k3^3 + k3^4 + k5^3 + k6^3 = 2024. Sau đó thực hiện thuật toán chọn ngẫu nhiên ba hộp bất kỳ rồi bỏ vào mỗi hộp 1 hạt đậu. Hỏi sau một số lần thực hiện, số hạt đậu trong 6 hộp có bằng nhau không?
Đề HSG Toán năm 2022 2023 phòng GD ĐT Phan Rang Tháp Chàm Ninh Thuận
Nội dung Đề HSG Toán năm 2022 2023 phòng GD ĐT Phan Rang Tháp Chàm Ninh Thuận Bản PDF - Nội dung bài viết Đề thi HSG Toán Năm 2022 – 2023 Phòng GD&ĐT Phan Rang – Tháp Chàm Ninh Thuận Đề thi HSG Toán Năm 2022 – 2023 Phòng GD&ĐT Phan Rang – Tháp Chàm Ninh Thuận Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán năm học 2022 – 2023 của Phòng Giáo dục và Đào tạo thành phố Phan Rang – Tháp Chàm, tỉnh Ninh Thuận. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 08 tháng 01 năm 2023. Đề thi bao gồm các bài toán như sau: 1. Cho đa thức \( f(x) = x^3 + ax^2 + bx + c \) trong đó a, b, c là các số thực. Biết rằng đa thức f(x) chia hết cho (x − 1). Tính giá trị biểu thức \( M = a^{2023} + b^{2023} + c^{2023} \). 2. Phòng Giáo dục và Đào tạo Thành phố Phan Rang – Tháp Chàm tổ chức một giải cờ vua cho học sinh nam và nữ cấp THCS. Mỗi kỳ thủ phải thi đấu đủ hai ván với mỗi kỳ thủ còn lại. Tham dự giải có 2 kỳ thủ nữ và số ván các kỳ thủ nam đấu với nhau nhiều hơn số ván họ đấu với các kỳ thủ nữ là 66. Hỏi có bao nhiêu kỳ thủ tham gia giải và số ván đấu tất cả các kỳ thủ đã chơi trong giải? 3. Cho tam giác ABC vuông tại A (AB khác AC), có đường cao AH. Đường phân giác góc AHB cắt AB tại E, đường phân giác góc AHC cắt AC tại F. a) Chứng minh bốn điểm A, E, H, F nằm trên một đường tròn. b) Đường phân giác góc BAC cắt BC tại D. Chứng minh ED vuông góc với AB. c) Gọi I là giao điểm của AH và FD. Chứng minh IC song song với EF.