Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập phương trình đường thẳng nâng cao

Tài liệu gồm 62 trang tuyển chọn 86 câu hỏi và bài tập trắc nghiệm nâng cao (vận dụng cao) chủ đề phương trình đường thẳng trong không gian Oxyz, có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Trích dẫn tài liệu bài tập phương trình đường thẳng nâng cao: + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + z – 4 = 0 và đường thẳng d: (x + 1)/2 = y/1 = (z + 2)/3. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d. + Trong không gian Oxyz, cho tam giác ABC với A(3;0;0), B(0;6;0), C(0;0;6). Phương trình nào dưới đây là phương trình đường thẳng đi qua trực tâm của tam giác ABC và vuông góc với mặt phẳng (ABC). [ads] + Cho hai mặt cầu (S1): (x – 3)^2 + (y – 2)^2 + (z – 2)^2 = 4, (S2): (x – 1)^2 + y^2 + (z – 1)^2 = 1. Gọi d là đường thẳng đồng thời tiếp xúc với hai mặt cầu trên, cắt đoạn thẳng nối tâm hai mặt cầu và cách gốc tọa độ O một khoảng lớn nhất. Nếu u(a;1;b) là một vectơ chỉ phương của d thì tổng S = 2a + 3b bằng bao nhiêu? + Trong không gian với hệ tọa độ Oxyz cho ba điểm A(2;-1;1), M(5;3;1), N(4;1;2) và mặt phẳng (P): y + z = 27. Biết rằng tồn tại điểm B trên tia AM, điểm C trên (P) và điểm D trên tia AN sao cho tứ giác ABCD là hình thoi. Tọa độ điểm C là? + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua gốc tọa độ O và điểm I(0;1;1). Gọi S là tập hợp các điểm nằm trên mặt phẳng (Oxy), cách đường thẳng d một khoảng bằng 6. Tính diện tích hình phẳng giới hạn bởi S.

Nguồn: toanmath.com

Đọc Sách

400 bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết
Tài liệu gồm 122 trang, được biên soạn bởi thầy giáo Hoàng Tuyên và thầy giáo Minh Tâm, tuyển chọn 400 bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết; các câu hỏi và bài tập được phân loại thành 10 dạng toán; tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 và ôn thi tốt nghiệp THPT môn Toán. + Dạng toán 1. Các phép toán số phức (Trang 3). + Dạng toán 2. Phần thực – phần ảo của số phức (Trang 10). + Dạng toán 3. Số phức liên hợp (Trang 13). + Dạng toán 4. Module số phức (Trang 17). + Dạng toán 5. Phương trình bậc nhất (Trang 22). + Dạng toán 6. Phương trình bậc hai & mối liên hệ giữa hai nghiệm (Trang 28). + Dạng toán 7. Phương trình bậc cao (Trang 44). + Dạng toán 8. Biểu diễn số phức (Trang 52). + Dạng toán 9. Tập hợp điểm biểu diễn số phức (Trang 66). + + Dạng toán 9.1. Tập hợp điểm biểu diễn là đường thẳng (Trang 66). + + Dạng toán 9.2. Tập hợp điểm biểu diễn là đường tròn (Trang 72). + + Dạng toán 9.3. Tập hợp điểm biểu diễn là đường Coníc (Trang 79). + Dạng toán 10. Max – min của module số phức (Trang 83).
Các dạng bài tập VDC số phức
Tài liệu gồm 57 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC số phức: CHỦ ĐỀ 1 . KHÁI NIỆM SỐ PHỨC VÀ CÁC PHÉP TOÁN CỦA SỐ PHỨC. Dạng 1: Thực hiện các phép toán của số phức, tìm phần thực phần ảo. Dạng 2. Tìm số phức liên hợp, tính môđun số phức. Dạng 3. Bài toán liên quan đến điểm biểu diễn số phức. Dạng 4. Tìm số phức thỏa mãn điều kiện cho trước. Dạng 5: Bài toán tập hợp điểm biểu diễn số phức. CHỦ ĐỀ 2 . PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐ PHỨC. Dạng 1: Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2: Định lí Vi-ét và ứng dụng. Dạng 3: Phương trình quy về phương trình bậc hai. CHỦ ĐỀ 3 . CỰC TRỊ SỐ PHỨC. Dạng 1: Phương pháp hình học. Dạng 2: Phương pháp đại số.
Các dạng bài tập VDC cực trị số phức
Tài liệu gồm 15 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) cực trị số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC cực trị số phức: A. LÍ THUYẾT TRỌNG TÂM 1. Các bất đẳng thức thường dùng. 2. Một số kết quả đã biết. B. CÁC DẠNG BÀI TẬP Dạng 1 : Phương pháp hình học. 1. Phương pháp giải. + Bước 1: Chuyển đổi ngôn ngữ bài toán số phức sang ngôn ngữ hình học. + Bước 2: Sử dụng một số kết quả đã biết để giải bài toán hình học. + Bước 3: Kết luận cho bài toán số phức. 2. Bài tập mẫu. Dạng 2 : Phương pháp đại số. 1. Phương pháp giải. 2. Bất đẳng thức Cauchy – Schwarz. 3. Bài tập mẫu.
Các dạng bài tập VDC phương trình bậc hai trên tập số phức
Tài liệu gồm 10 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình bậc hai trên tập số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình bậc hai trên tập số phức: A. LÍ THUYẾT 1. Căn bậc hai của một phức. 2. Giải phương trình bậc hai với hệ số thực. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2: Định lí Vi-ét và ứng dụng. Dạng 3: Phương trình quy về phương trình bậc hai.