Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập phương pháp tọa độ trong không gian - Diệp Tuân

Tài liệu gồm 383 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng toán và tuyển chọn các bài tập trắc nghiệm – tự luận chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh rèn luyện khi học chương trình Hình học 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. BÀI 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN OXYZ. + Dạng toán 1. Xác định tọa độ của điểm, tọa độ vectơ, tích vô hướng. + Dạng toán 2. Ứng dụng của tích có hướng. BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG. + Dạng toán 1. Lập phương trình mặt phẳng khi biết một điểm và một véc tơ pháp tuyến. + Dạng toán 2. Lập phương trình mặt phẳng khi biết một điểm, khoảng cách, góc và chưa có véc tơ pháp tuyến. + Dạng toán 3. Vị trí tương đối của hai mặt phẳng, khoảng cách và góc của hai mặt phẳng. + Dạng toán 4. Tìm hình chiếu của điểm xuống mặt phẳng, tìm điểm đối xứng. + Dạng toán 5. Bài toán cực trị (giá trị lớn nhất và nhỏ nhất). BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng toán 1. Viết phương trình đường thẳng. + Dạng toán 2. Hình chiếu của điểm, của đường thẳng lên đường thẳng, mặt phẳng. + Dạng toán 3. Viết phương tình đường phân giác trong và ngoài của tam giác, của hai đường thẳng. + Dạng toán 4. Một số bài toán liên quan đến góc, khoảng cách và tương giao. BÀI 4 . PHƯƠNG TRÌNH MẶT CẦU. + Dạng toán 1. Xác định tâm và bán kính mặt cầu cho trước. + Dạng toán 2. Viết phương trình mặt cầu thỏa mãn điều kiện cho trước. BÀI 5 . ỨNG DỤNG PHƯƠNG PHÁP TỌA ĐỘ.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm ôn tập chương phương pháp tọa độ trong không gian - Nguyễn Tấn Phong
Tài liệu gồm 25 trang với tóm tắt lý thuyết, công thức tính toán và bài tập ôn tập chương phương pháp tọa độ trong không gian. Tọa độ điểm – tọa độ vectơ I. Hệ trục tọa độ oxyz II. Tọa độ vectơ Một số ứng dụng và công thức: 1. Chứng minh 3 điểm a,b,c thẳng hàng; không thẳng hàng 2. D là đỉnh hình bình hành ABCD ⇔ vtAD = vtBC 3. Diện tích hình bình hành ABCD 4. Diện tích tam giác ABC 5. Chứng minh 4 điểm a, b, c, d đồng phẳng, không đồng phẳng 6. Thể tích tứ diện ABCD 7. Thể tích hình hộp ABCD.A’B’C’D’ Khoảng cách 8. Khoảng cách giữa 2 điểm A,B (độ dài đoạn thẳng AB) 9. Khoảng cách từ một điểm đến mặt phẳng 10. Khoảng cách từ điểm đến đường thẳng 11. Khoảng cách giữa 2 đường thẳng chéo nhau [ads] Công thức góc 12. Góc giữa 2 vectơ 13. Góc giữa 2 mặt phẳng 14. Góc giữa 2 đường thẳng 15. Góc giữa đường thẳng; mặt phẳng; phương trình mặt cầu I. Phương trình mặt cầu II. Vị trí tương đối giữa mặt phẳng và mặt cầu Phương trình mặt phẳng 1. Vectơ pháp tuyến 2. Phương trình tổng quát của mặt phẳng 3. Các trường hợp đặc biệt của phương trình mặt phẳng 4. Vị trí tương đối giữa 2 mặt phẳng Phương trình đường thẳng 1. Vectơ chỉ phương 2. Phương trình tham số của đường thẳng 3. Phương trình chính tắc của đường thẳng 4. Vị trí tương đối giữa 2 đường thẳng 4. Vị trí tương đối giữa đường thẳng và mặt phẳng
Các dạng bài tập phương trình đường thằng trong không gian - Đặng Ngọc Hiền, Lê Bá Bảo
Tài liệu gồm lý thuyết, phân dạng, hướng dẫn giải, ví dụ minh họa có lời giải chi tiết và bài tập trắc nghiệm có đáp án chủ đề phương trình đường thẳng trong không gian. Các dạng toán trong tài liệu: + Dạng 1: Xác định vectơ chỉ phương của đường thẳng + Dạng 2: Lập phương trình đường thẳng + Dạng 3: Xét vị trí tương đối của hai đường thẳng + Dạng 4: Vị trí tương đối của đường thẳng và mặt phẳng [ads] + Dạng 5: Hình chiếu của một điểm lên một đường thẳng + Dạng 6: Hình chiếu của một điểm lên một mặt phẳng + Dạng 7: Khoảng cách từ điểm đến đường thẳng. Khoảng cách giữa hai đường thẳng chéo nhau + Dạng 8: Góc giữa hai đường thẳng. Góc giữa đường thẳng và mặt phẳng
Bài tập trắc nghiệm hình học Oxyz - Huỳnh Văn Lượng
Tài liệu gồm 28 trang với phần tóm tắt lý thuyết, công thức và bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian. Trích dẫn tài liệu : + Cho mặt phẳng (α): 4x – 2y + 3z + 1 = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2z + 4y + 6z = 0. Khi đó, mệnh đề nào sau đây là một mệnh đề sai: A. (α) cắt (S) theo một đường tròn B. (α) tiếp xúc với (S) C. (α) có điểm chung với (S) D. (α) đi qua tâm của (S) [ads] + Cho điểm M(–3; 2; 4), gọi A, B, C lần lượt là hình chiếu của M trên Ox, Oy, Oz. Mặt phẳng song song với mp(ABC) có phương trình là: A. 4x – 6y –3z + 12 = 0 B. 3x – 6y –4z + 12 = 0 C. 6x – 4y –3z – 12 = 0 D. 4x – 6y –3z – 12 = 0 Trong không gian với hệ trục toạ độ Oxyz cho các điểm A (1;0;0), B (0;2;0), C (0;0;3), D (1;2;0). Viết phương trình mặt phẳng (DA’B’) với A’, B’ là 2 đỉnh của hình hộp chữ nhật OADB.CA’D’B’. A. 6x + 3y + z – 12 = 0 B. 6x + 3y – z – 12 = 0 C .6x – 3y + z – 12 = 0 D. 6x – 3y – z + 12 = 0
113 bài tập trắc nghiệm phương trình mặt phẳng - Huỳnh Công Dũng
Tài liệu gồm 15 trang với 113 bài tập trắc nghiệm thuộc chuyên đề phương trình mặt phẳng có đáp án.