Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu học sinh giỏi lớp 8 môn Toán năm 2018 2019 phòng GD ĐT thành phố Thái Nguyên

Nội dung Đề giao lưu học sinh giỏi lớp 8 môn Toán năm 2018 2019 phòng GD ĐT thành phố Thái Nguyên Bản PDF - Nội dung bài viết Đề Thi Giao Lưu Học Sinh Giỏi Toán Lớp 8 Năm 2018 - 2019 Tại Thành Phố Thái Nguyên Đề Thi Giao Lưu Học Sinh Giỏi Toán Lớp 8 Năm 2018 - 2019 Tại Thành Phố Thái Nguyên Đề thi giao lưu học sinh giỏi môn Toán lớp 8 năm học 2018 - 2019 do Phòng Giáo dục và Đào tạo thành phố Thái Nguyên tổ chức gồm 03 trang với tổng cộng 08 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, giúp học sinh thể hiện kiến thức và kỹ năng trong môn học này. Đề thi được thiết kế để khuyến khích sự sáng tạo, tư duy logic và khả năng giải quyết vấn đề của học sinh giỏi. Bằng cách tham gia vào cuộc thi, họ có cơ hội rèn luyện và nâng cao khả năng Toán học của mình. Đề thi này không chỉ là cơ hội để học sinh thể hiện bản thân mà còn là dịp tốt để họ học hỏi và trải nghiệm từ các đồng đội. Kết quả của cuộc thi không chỉ là điểm số mà còn là sự phát triển cá nhân và tinh thần đồng đội trong học tập.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Lang Chánh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lang Chánh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 01 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Lang Chánh – Thanh Hóa : + Giải phương trình nghiệm nguyên dương: 2 2 x y xy 3. Cho x y là các số nguyên thỏa mãn đẳng thức 2 2 3 12 1 x y. Chứng minh rằng 2 2 x y chia hết cho 40. + Cho đoạn thẳng AB. Kẻ tia Bx vuông góc với AB tại B. Trên tia Bx lấy điểm C (C khác B). Kẻ BH vuông góc với AC (điểm H thuộc AC). Gọi M là trung điểm của AB. 1. Chứng minh rằng: HA.HC = HB2 2. Kẻ HD vuông góc với BC (D thuộc BC). Gọi I là giao điểm của AD và BH. Chứng minh rằng ba điểm C, I, M thẳng hàng. 3. Giả sử AB cố định, điểm C thay đổi trên tia Bx. Biết 1 BM AB HA CH IC MI. Tìm vị trí của điểm C trên tia Bx sao cho diện tích tam giác ABI lớn nhất. + Cho các số abc không âm thỏa mãn abc 3. Tìm giá trị nhỏ nhất của biểu thức 333.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Đông Hưng - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn nguồn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đông Hưng, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Đông Hưng – Thái Bình : + Cho x, y, z thoả mãn: 2 2 2 2x 4y z 4xy 4x 2z 5 0. Tính giá trị của biểu thức: x 20 2023 Q 10 y z. + Tìm đa thức dư khi chia đa thức f (x) cho 2 x x 6 biết đa thức f (x) chia cho (x 2) dư (-12); đa thức f (x) chia cho (x 3) dư 28. + Cho hình vuông ABCD có cạnh bằng a, gọi O là giao điểm của hai đường chéo. Trên cạnh AB lấy điểm I, trên cạnh BC lấy điểm M sao cho 0 IOM 90 (I và M không trùng với các đỉnh hình vuông). Gọi N là giao điểm của AM và DC, K là giao điểm của OM và BN. a) Chứng minh rằng: BI CM và tính diện tích tứ giác BIOM theo a. b) Chứng minh rằng: IM // BN và OM.MK MB.MC. c) Trên cạnh DC lấy điểm E sao cho 0 MAE 45. Chứng minh chu vi tam giác CME không đổi khi điểm I di chuyển trên cạnh AB và luôn có 0 IOM 90.
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Thanh Hà - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Hà, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Thanh Hà – Hải Dương : + Cho đoạn thẳng AB, M là một điểm nằm giữa A và B. Vẽ về một phía của AB các hình vuông AMCD, BMEF. Gọi H là giao điểm của AE và BC. 1) Chứng minh AME CMB và AE BH. 2) Gọi O và O’ lần lượt là giao điểm hai đường chéo của hình vuông AMCD, BMEF. Chứng minh ba điểm D, H, F thẳng hàng. 3) Chứng minh đường thẳng DF luôn đi qua một điểm cố định khi M di chuyển trên đoạn thẳng cố định AB. + Xác định các số a, b để đa thức f x x ax b 3 2 2 chia hết cho đa thức 1 2 g x x. + Tìm giá trị nhỏ nhất của biểu thức: 2 2 B xy x 2 y 6 12x 24x 3y 18y 2053.
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 cụm Trung học Cơ sở phòng Giáo dục và Đào tạo UBND huyện Vĩnh Lộc, tỉnh Thanh Hóa; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2023. Trích dẫn đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Tìm đa thức P(x) thoả mãn: P(x) chia cho x + 3 dư 1; chia cho x – 4 dư 8; chia cho (x + 3)(x – 4) được thương là 3x và còn dư. + Tìm số tự nhiên có 9 chữ số: 1 2 312 31 2 3 A aa abbba trong đó 1 a 0 và 123 12 3 bbb aa a 2 và đồng thời A viết được dưới dạng 2 1 234 A p với 1234 pp là bốn số nguyên tố. + Cho tam giác ABC vuông tại A (AB AC) gọi AD là tia phân giác của góc BAC. Gọi M và N lần lượt là hình chiếu của D trên AB và AC; E là giao điểm của BN và DM, F là giao điểm của CM và DN. a) Chứng minh tứ giác AMDN là hình vuông và EF BC. b) Gọi H là giao điểm của BN và CM. Chứng minh ∆ANB đồng dạng với ∆NFA và H là trực tâm ∆AEF. c) Gọi P là điểm trên AN, Q là điểm trên AM sao cho AP = MQ. Tìm vị trí của P và Q để diện tích tứ giác MQPN đạt giá trị nhỏ nhất.