Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập VDC thể tích của khối đa diện

Tài liệu gồm 79 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) thể tích của khối đa diện, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC thể tích của khối đa diện: A. LÍ THUYẾT Công thức tính thể tích khối chóp, lăng trụ. Các công thức hình phẳng cần nắm. Nhắc lại cách xác định các góc trong không gian. B. CÁC DẠNG BÀI TẬP Dạng 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 2. Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Thể tích khối chóp biết trước một đường thẳng vuông góc với đáy. Dạng 5. Thể tích khối chóp có các cạnh bên bằng nhau hoặc các cạnh bên, mặt bên cùng tạo với đáy những góc bằng nhau. Dạng 6. Thể tích lăng trụ đứng. Dạng 7. Thể tích lăng trụ xiên. Dạng 8. Thể tích hình hộp. Dạng 9. Tỉ số thể tích khối chóp. Dạng 10. Tỉ số thể tích khối lăng trụ. Dạng 11. Tỉ số thể tích khối hộp. Dạng 12. Tách hình để tính thể tích. Dạng 13. Phục hình và trải phẳng. Dạng 14. Bài toán cực trị liên quan đến thể tích khối đa diện. Dạng 15. Sử dụng thể tích để tính khoảng cách.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm nguyên hàm, tích phân - Phạm Văn Sáu
Tài liệu gồm 33 trang với các bài tập trắc nghiệm nguyên hàm, tích phân được phân loại theo độ khó: Nhận biết, thông hiểu, vận dụng bậc thấp và vận dụng bậc cao.
Bài tập trắc nghiệm nguyên hàm - Nguyễn Đại Dương
NGUYÊN HÀM VÀ CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM Khái niệm nguyên hàm và tính chất Một số lưu ý cần nắm vững khi giải bài tập trắc nghiệm nguyên hàm: 1. Cần nắm vững bảng nguyên hàm 2. Nguyên hàm của một tích (thương) của nhiều hàm số không bao giờ bằng tích (thương) của các nguyên hàm của những hàm thành phần 3. Muốn tìm nguyên hàm của một hàm số, ta phải biến đổi hàm số này thành một tổng hoặc hiệu của những hàm số tìm được nguyên hàm (dựa vào bảng nguyên hàm) [ads] Các dạng toán trắc nghiệm nguyên hàm: + Dạng toán 1: Tìm nguyên hàm bằng công thức cơ bản + Dạng toán 2: Tìm nguyên hàm của hàm số hữu tỉ + Dạng toán 3: Tìm nguyên hàm bằng phương pháp đổi biến số + Dạng toán 4: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần
Bài tập tự luận và trắc nghiệm nguyên hàm, tích phân và ứng dụng - Hồng Đức, Bích Ngọc
Cuốn sách “Giải tích 12: Tích phân và ứng dụng” gồm 208 trang tuyển chọn các bài toán trắc nghiệm và tự luận chủ đề nguyên hàm, tích phân và ứng dụng, các bài toán có đáp án và hướng dẫn giải. Nội dung sách được chia thành 8 chủ đề: + Chủ đề 1: Nguyên hàm + Chủ đề 2: Tích phân + Chủ đề 3: Các phương pháp tính tích phân + Chủ đề 4: Tính tích phân các dạng hàm số thường gặp [ads] + Chủ đề 5: Đẳng thức, bất đẳng thức tích phân + Chủ đề 6: Phương trình, bất phương trình tích phân + Chủ đề 7: Sử dụng tích phân tính diện tích hình phẳng + Chủ đề 8: Sử dụng tích phân tính thể tích vật thể
Tuyển chọn bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng - Đặng Việt Đông
Tài liệu gồm 75 trang tuyển chọn các bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng với nhiều dạng bài và mức độ nhận thức. Nguyên hàm A – Lý thuyết tóm tắt 1. Khái niệm nguyên hàm 2. Tính chất 3. Nguyên hàm của một số hàm số thường gặp B – Bài tập (157 câu) Phương pháp đổi biến và vi phân A – Lý thuyết tóm tắt và phương pháp B – Bài tập (76 câu) Phương pháp từng phần A – Lý thuyết tóm tắt phương pháp lấy nguyên hàm từng phần B – Bài tập (23 câu) [ads] Tích phân A – Lý thuyết tóm tắt 1. Khái niệm tích phân 2. Tính chất của tích phân 3. Phương pháp tính tích phân + Phương pháp đổi biến số + Phương pháp tích phân từng phần B – Bài tập (80 câu) C – Tích phân tổng hợp (124 câu) Ứng dụng tính diện tích A – Lý thuyết tóm tắt B – Bài tập (127 câu) Ứng dụng tính thể tích A – Lý thuyết tóm tắt B – Bài tập (52 câu)