Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 9 năm 2015 - 2016 sở GDĐT Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2015 – 2016 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2016; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2015 – 2016 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x m xm 2 (m là tham số, x là ẩn). 1. Chứng minh với mọi giá trị của m phương trình luôn có hai nghiệm phân biệt 1 2 x x 2. Tìm tất cả các giá trị của tham số m sao cho: 1 2 1 2 2 1 1 2 2 1 2 1 55 x x. + Cho các số thực không âm x, y, z đôi một khác nhau đồng thời thoả mãn zxzy 1. Chứng minh rằng: 222 111 4 xy zx zy. + Từ điểm M nằm ngoài đường tròn (O) vẽ các tiếp tuyến MA, MB và cát tuyến MNP với đường tròn (A, B là các tiếp điểm, N nằm giữa M và P). Gọi H là giao điểm của AB và MO. 1. Chứng minh: Tứ giác NHOP nội tiếp được đường tròn. 2. Kẻ dây cung PQ vuông góc với đường thẳng MO. Chứng minh ba điểm N, H, Q thẳng hàng. 3. Gọi E là giao điểm của MO và cung nhỏ AB của đường tròn (O). Chứng minh: NE là tia phân giác của MNH.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 6 năm 2022 2023 phòng GD ĐT Kinh Môn Hải Dương
Nội dung Đề khảo sát Toán 9 lần 6 năm 2022 2023 phòng GD ĐT Kinh Môn Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát Toán 9 lần 6 năm 2022-2023 phòng GD&ĐT Kinh Môn, Hải Dương Đề khảo sát Toán 9 lần 6 năm 2022-2023 phòng GD&ĐT Kinh Môn, Hải Dương Xin chào quý thầy, cô giáo và các em học sinh lớp 9! Sytu rất vinh dự được giới thiệu đến mọi người đề thi khảo sát chất lượng môn Toán lớp 9 lần 6 năm học 2022-2023 do Phòng Giáo dục và Đào tạo UBND thị xã Kinh Môn, tỉnh Hải Dương tổ chức. Đề thi bao gồm các câu hỏi thú vị và phong phú, đi kèm với đáp án, lời giải chi tiết và hướng dẫn chấm điểm cụ thể. Một số câu hỏi mẫu trong đề bao gồm: Giải bài toán vận tốc của xe tải và xe con theo đề bài. Phân tích và giải hệ thức toán học đường thẳng và Parabol. Chứng minh các tính chất của tứ giác trong hình vẽ cho trước. Đây không chỉ là cơ hội để thử thách kiến thức của các em mà còn là dịp để rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Hy vọng rằng đề thi sẽ giúp các em tự tin hơn trong việc học tập và chuẩn bị cho kỳ thi sắp tới. File WORD của đề thi và đáp án đã được chuẩn bị sẵn sàng để quý thầy, cô giáo có thể sử dụng cho công tác giảng dạy. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!
Đề học sinh giỏi Toán 9 vòng tỉnh năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS vòng tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào ngày 23 tháng 04 năm 2024. Trích dẫn Đề học sinh giỏi Toán 9 vòng tỉnh năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Một miếng tôn hình tam giác có diện tích là S. Người thợ làm biển quảng cáo muốn cắt ra một hình bình hành (một đỉnh là đỉnh của tam giác và ba đỉnh còn lại nằm trên ba cạnh tam giác). Hỏi hình bình hành mà người thợ cắt ra có thể đạt diện tích lớn nhất bằng bao nhiêu? + Trong đợt cắm trại chào mừng ngày thành lập Đoàn 26/03 có 20 bạn mang số áo từ 1 đến 20 nắm tay nhau tạo thành một vòng tròn để tham gia các trò chơi tập thể. Chứng minh luôn tìm được 5 bạn đứng liền kề với nhau mà tổng các số áo của họ lớn hơn 52. + Chứng minh 2n3 + 3n2 + 25n chia hết cho 6 với mọi số tự nhiên n.
Đề Olympic Toán 9 lần 1 năm 2023 - 2024 trường THPT chuyên Lê Quý Đôn - Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic môn Toán 9 lần thứ nhất năm học 2023 – 2024 trường THPT chuyên Lê Quý Đôn, tỉnh Điện Biên; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2024. Trích dẫn Đề Olympic Toán 9 lần 1 năm 2023 – 2024 trường THPT chuyên Lê Quý Đôn – Điện Biên : + Cho phương trình: x2 + mx + 2m – 7 = 0 (1) (ẩn x) với m là tham số nguyên. a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1, x2; tìm m để 9×1 = x22. b) Chứng minh rằng m là số nguyên lẻ thì phương trình (1) không có nghiệm hữu tỉ. + Cho tam giác nhọn ABC (AB < AC), ba đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm của EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a) Chứng minh AEF ~ ABC. b) Chứng minh IP = IQ. c) Gọi M là trung điểm của AH. Chứng minh I là trực tâm của tam giác BMC.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2024.