Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán chuẩn bị thi THPTQG 2019 trường THPT Gia Định - TP. HCM lần 1

Đề kiểm tra Toán chuẩn bị thi THPTQG 2019 trường THPT Gia Định – TP. HCM lần 1 mã đề 891 gồm 04 trang với 50 câu trắc nghiệm, học sinh làm bài thi trong 90 phút, kỳ thi nhằm giúp học sinh có những bước chuẩn bị thật tốt để đạt điểm số cao trong kỳ thi chính thức Trung học Phổ thông Quốc gia 2019 môn Toán sắp tới, đề thi có đáp án. Trích dẫn đề kiểm tra Toán chuẩn bị thi THPTQG 2019 trường THPT Gia Định – TP. HCM lần 1 : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều, mặt bên (SCD) là tam giác vuông cân tại S. Gọi M là điểm thuộc đường thẳng CD sao cho BM vuông góc với SA. Tính thể tích V của khối chóp S.BDM. [ads] + Hình nón (N) có đình S, tâm đường tròn đáy là O, góc ở định bằng 120°. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3. Tính diện tích xung quanh Sxq của hình nón (N). + Một người gửi tiết kiệm vào ngân hàng với lãi suất 7,5 %/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền đã gửi, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử kỳ thi tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Hậu Giang; đề thi mã đề 101 gồm 08 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề), cấu trúc đề thi bám sát đề minh họa tốt nghiệp THPT 2022 môn Toán của Bộ Giáo dục và Đào tạo. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Hậu Giang : + Tại điểm tiêm ngừa vaccine phòng chống dịch Covid-19 của một cơ sở Y tế có 5 người gồm bác sĩ và y tá. Trong đó có đúng một cặp vợ chồng. Xếp ngẫu nhiên 5 người ngồi vào một dãy 5 ghế thẳng hàng (mỗi người ngồi một ghế) để thực hiện công việc. Tính xác suất để hai bạn A và B là cặp vợ chồng, không ngồi cạnh nhau. + Trong không gian với hệ trục toạ độ Oxyz cho mặt cầu S tâm I(1;1;1) và đi qua điểm A(0;2;0). Xét khối chóp đều A.BCD có B C D thuộc mặt cầu S. Khi khối tứ diện ABCD có thể tích lớn nhất, mặt phẳng BCD có phương trình dạng x by cz d 0. Tính giá trị của b c d. + Cho hàm số y f x có đạo hàm, liên tục trên và có 3 cực trị, thoả mãn 4 3 2 1 3 4 2 f x f x x x x. Gọi g x là hàm số bậc hai đi qua 3 điểm cực trị của y f x. Tính diện tích hình phẳng giới hạn bởi các đồ thị của y f x và y g x.
Đề thi thử Toán TN THPT 2022 lần 3 trường THPT Trần Quốc Tuấn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT môn Toán lần 3 năm học 2021 – 2022 trường THPT Trần Quốc Tuấn, tỉnh Quảng Ngãi; đề thi có đáp án mã đề 001 002 003 004 005 006 007 008. Trích dẫn đề thi thử Toán TN THPT 2022 lần 3 trường THPT Trần Quốc Tuấn – Quảng Ngãi : + Cho đồ thị hàm số bậc bốn y f x và parabol y g x như hình vẽ. Biết A B là hai giao điểm và C D lần lượt là các điểm cực đại của đồ thị hàm số y f x và y g x thỏa mãn AB 5 CD 2. Gọi 1 2 3 S S S là diện tích các hình phẳng được tô đậm và 1 25 8 S. Giá trị 2 3 10 3 S S bằng? + Trong không gian Oxyz cho điểm A 2 1 3 đường thẳng 2 5 3 1 2 2 x y z và mặt cầu 2 2 2 S x y z 1 1 25. Mặt phẳng thay đổi luôn đi qua A và song song với. Trong trường hợp cắt mặt cầu S theo một đường tròn có chu vi nhỏ nhất thì có phương trình ax by cz 9 0. Tính giá trị của biểu thức S a b c. + Cho hàm số y f x có đồ thị gồm 2 nhánh parabol hợp lại như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để hàm số 2 3 3 5 x m y f x có 4 điểm cực trị?
Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Nguyễn Gia Thiều - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần 2 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội (mã đề 275). Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Nguyễn Gia Thiều – Hà Nội : + Trong không gian Oxyz, cho biết có hai mặt cầu có tâm nằm trên đường thẳng 1 2 2 1 1 x y z d tiếp xúc đồng thời với hai mặt phẳng 2 2 1 0 x y z và 2 3 6 2 0 x y z. Gọi R1 và R2 (R R 1 2) là bán kính của hai mặt cầu đó. Tỉ số 1 2 R R bằng? + Cho hình chóp S ABCD có đáy ABCD là hình bình hành có diện tích bằng 2 12a; khoảng cách từ S tới mặt phẳng ABCD bằng 4a. Gọi N là trọng tâm tam giác ACD; gọi G và T lần lượt là trung điểm các cạnh SB và SC. Mặt phẳng NGT chia khối chóp thành hai khối đa diện. Thể tích của khối đa diện chứa đỉnh S bằng? + Cho hàm số y f x có đạo hàm liên tục trên và có đồ thị hàm số y f x như hình vẽ bên. Biết f b 0 hỏi đồ thị hàm số y f x cắt trục hoành tại nhiều nhất bao nhiêu điểm?
Đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Trấn Biên - Đồng Nai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Trấn Biên – Đồng Nai (mã đề GỐC); đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Trấn Biên – Đồng Nai : + Trong không gian Oxyz, cho mặt cầu 2 22 Sx y z 1 2 3 27. Gọi (α) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (α) 0 ax by z c khi đó abc bằng? + Một trang trại đang dùng hai bể nước hình trụ có cùng chiều cao; bán kính đáy lần lượt bằng 1,6m và 1,8 m. Trang trại làm một bể nước mới hình trụ, có cùng chiều cao và thể tích bằng tổng thể tích của hai bể nước trên; biết ba hình trụ trên là phần chứa nước của mỗi bể. Bán kính đáy của bể nước mới gần nhất với kết quả nào dưới đây? + Trong khuôn viên một trường đại học có 5000 sinh viên, một sinh viên vừa trở về sau kì nghỉ và bị nhiễm virus cúm truyền nhiễm kéo dài. Sau đó lây lan cho các sinh viên của trường và sự lây lan này được mô hình hóa bởi công thức 0 8 5000 1 4999e t y ∀ t 0. Trong đó y là tổng số học sinh bị nhiễm sau t ngày. Các trường đại học sẽ cho các lớp học nghỉ khi có nhiều hơn hoặc bằng 40% số sinh viên bị lây nhiễm. Sau ít nhất bao nhiêu ngày thì trường cho các lớp nghỉ học?