Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 1 năm 2020 - 2021 trường Thạch Thành 1 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề khảo sát chất lượng bồi dưỡng môn Toán lớp 12 lần 1 năm học 2020 – 2021 trường THPT Thạch Thành 1, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL Toán 12 lần 1 năm 2020 – 2021 trường Thạch Thành 1 – Thanh Hóa : + Ông A đã gửi tổng cộng 500 triệu đồng vào hai ngân hàng X và Y theo phương thức lãi kép. Số tiền thứ nhất ông gửi vào ngân hàng Y với lãi suất cố định là 0,37% một tháng trong 9 tháng. Số tiền còn lại ông gửi vào ngân hàng X với lãi suất cố định là 1,7% một quý trong thời gian 15 tháng. Tổng số tiền lãi ông đã thu được từ hai ngân hàng khi chưa làm tròn là 27866121,21 đồng. Tính số tiền gần nhất mà ông A đã gửi lần lượt vào hai ngân hàng X và Y. A. 400 triệu đồng và 100 triệu đồng. B. 300 triệu đồng và 200 triệu đồng. C. 200 triệu đồng và 300 triệu đồng. D. 100 triệu đồng và 400 triệu đồng. + An và Bình cùng tham gia kỳ thi THPT Quốc Gia 2021, trong đó có 2 môn thi trắc nghiệm là Vật lí và Hóa học. Đề thi của mỗi môn gồm 6 mã khác nhau và các môn khác nhau có mã khác nhau. Đề thi được sắp xếp và phát cho các thí sinh một cách ngẫu nhiên. Xác suất để trong 2 môn thi đó An và Bình có chung đúng một mã đề thi là? + Cho hình nón N1 có đỉnh S, chiều cao h. Một hình nón N2 có đỉnh là tâm của đáy N1 và có đáy là một thiết diện song song với đáy của N1 như hình vẽ. Khối nón N2 có thể tích lớn nhất khi chiều cao x bằng?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 lần 1 năm 2023 - 2024 sở GDĐT Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát đánh giá chất lượng giáo dục môn Toán 12 THPT & GDTX lần thứ nhất năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình, hướng đến kỳ thi tốt nghiệp THPT 2024 và tuyển sinh vào Đại học, Cao đẳng; kỳ thi được diễn ra vào thứ Sáu ngày 24 tháng 11 năm 2023; đề thi có đáp án mã đề 001 – 002 – 003 – 004 – 005 – 006 – 007 – 008 – 009 – 010 – 011 – 012 – 013 – 014 – 015 – 016 – 017 – 018 – 019 – 020 – 021 – 022 – 023 – 024. Trích dẫn Đề khảo sát chất lượng Toán 12 lần 1 năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Bạn Tuệ giành được học bổng 160.000 USD, bằng 80% chi phí học tập, ăn ở trong 4 năm học tại trường Đại học X, kể từ năm học 2023 – 2024. Số 20% chi phí còn lại bạn được trường cho vay không lãi trong suốt 4 năm học đại học. Từ ngày 01/9/2027, trường bắt đầu tính lãi 0,25%/tháng (thể thức lãi kép) và kể từ đó, cứ vào ngày đầu tiên của mỗi tháng tiếp theo, bạn Tuệ sẽ phải trả một số tiền không đổi cho nhà trường trong vòng 4 năm thì sẽ trả hết cả vốn lẫn lãi. Hỏi số tiền mỗi tháng bạn Tuệ sẽ phải trả cho trường đại học là bao nhiêu USD? (Kết quả làm tròn đến hàng phần chục). + Cho hàm số bậc ba y = f(x) và hàm số bậc nhất y = g(x) có đồ thị lần lượt là đường cong và đường thẳng trong hình vẽ bên. Gọi A, B lần lượt là giao điểm của đồ thị hàm số y = f(x) và y = g(x) với trục tung. Biết AB = 4, bất phương trình f(x) − 4 ≤ g(x) có bao nhiêu nghiệm nguyên trên đoạn [−10;10]? + Cho hình lập phương ABCD.A′B′C′D′. Hình hộp chữ nhật MNPQ.M′N′P′Q′ có các đỉnh thuộc các mặt của hình lập phương, đồng thời hai mặt (MNN′M′) và (PQQ′P′) chia đoạn A′C thành ba phần bằng nhau. Tỉ số thể tích của khối hộp chữ nhật MNPQ.M′N′P′Q′ và khối lập phương ABCD.A′B′C′D′ là?
Đề kiểm tra lần 1 Toán 12 năm 2023 - 2024 trường THPT Lý Thường Kiệt - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng lần 1 môn Toán 12 năm học 2023 – 2024 trường THPT Lý Thường Kiệt, tỉnh Bắc Ninh; đề thi gồm 07 trang, hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án mã đề 201 202 203 204. Trích dẫn Đề kiểm tra lần 1 Toán 12 năm 2023 – 2024 trường THPT Lý Thường Kiệt – Bắc Ninh : + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AD AB a 2 2. Cạnh bên SA a 2 và vuông góc với đáy. Gọi M N lần lượt là trung điểm của SB và SD. Tính khoảng cách d từ S đến mặt phẳng (AMN). + Cho hàm số có đồ thị là hình bên dưới. Tìm tất cả các giá trị thực của tham số để phương trình 3 2x 6x m 1 0 có 3 nghiệm phân biệt trong đó có 2 nghiệm âm. + Cho hàm số 2 2 y fx 1 x có đồ thị (C). Tiếp tuyến của (C) tại điểm có hoành độ x = 2 có hệ số góc bằng?
Đề khảo sát lần 2 Toán 12 năm 2023 - 2024 trường THPT Đội Cấn - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng lần 2 môn Toán 12 năm học 2023 – 2024 trường THPT Đội Cấn, tỉnh Vĩnh Phúc; đề thi gồm 06 trang, hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án mã đề 081. Trích dẫn Đề khảo sát lần 2 Toán 12 năm 2023 – 2024 trường THPT Đội Cấn – Vĩnh Phúc : + Một vật chuyển động theo quy luật 1 3 2 6 3 s t với t là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 9 giây kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu? + Cho hình chóp tứ giác S.ABCD có đáy là hình vuông, mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết khoảng cách từ điểm A đến mặt phẳng (SCD) bằng 3 7 7 a. Thể tích V của khối chóp S.ABCD là? + Cho hàm số trùng phương 4 2 y ax bx c có đồ thị như hình vẽ. Hỏi đồ thị hàm số 2 2 2 4 2 2 3 x y fx có tổng cộng bao nhiêu tiệm cận đứng?
Đề khảo sát Toán 12 năm 2023 - 2024 trường THPT Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 đợt tháng 10 & tháng 11 năm học 2023 – 2024 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề thi mã đề 101, gồm 07 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn Đề khảo sát Toán 12 năm 2023 – 2024 trường THPT Tiên Du 1 – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Gọi G là trọng tâm tam giác SAB. Gọi M, N lần lượt là trung điểm của SC, SD. Tính tan của góc giữa (GMN) và (ABCD). + Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình 3 2 x xm 3 2 có 3 nghiệm phân biệt trong đó có đúng 2 nghiệm nhỏ hơn −1. Tổng tất cả các phần tử của tập S là? + Cho tam giác ABC có độ dài ba cạnh là BC a AC b AB c. Gọi ma là độ dài đường trung tuyến kẻ từ đỉnh A, R là bán kính đường tròn ngoại tiếp tam giác và S là diện tích tam giác đó. Mệnh đề nào sau đây sai?