Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2018 2019 trường Nguyễn Đức Cảnh Thái Bình

Đề thi HSG Toán 11 năm học 2018 – 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình mã đề 001 gồm 3 trang, đề gồm 20 câu hỏi và bài toán trắc nghiệm (chiếm 6 điểm) và 4 bài toán tự luận (chiếm 4 điểm), thời gian làm bài 90 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 11 giỏi môn Toán để bổ sung vào đội tuyển HSG Toán 11 của nhà trường. Trích dẫn đề thi HSG Toán 11 năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình : + Cho hình chóp S.ABCD với đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm các cạnh SA, SB Gọi M là điểm bất kì trên cạnh BC (không trùng với B, C). Thiết diện của mặt phẳng (MEF) với hình chóp S.ABCD là: A. Hình tam giác. B. Hình bình hành. C. Hình thoi. D. Hình thang. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, biết SA vuông góc với mặt phẳng (ABCD). Biết góc giữa hai mặt phẳng (SBC) và (SAD) bằng 45 độ. Gọi E, M lần lượt là trung điểm của SC và SA. Tính khoảng cách giữa hai đường thẳng DM và BE. + Số phương trình tiếp tuyến của đồ thị hàm số y = x^3/3 – 2x^2 + 3x + 1, biết tiếp tuyến song song với đường thẳng d: y = 8x – 97/3 và cắt trục hoành tại điểm có hoành độ dương là?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 11 năm 2020 - 2021 trường THPT Đông Hà - Quảng Trị
Đề thi học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2021. Trích dẫn đề thi học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị : + Một trường có 50 học sinh giỏi, trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham gia trại hè. Tính xác suất để 3 em được chọn không có cặp anh em sinh đôi. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB a AD a SA ABCD và SA a, M là trung điểm của CD. a) Tính góc giữa SM và SAB. b) Tính theo a khoảng cách từ A đến SBM. + Cho M N P lần lượt là trung điểm của ba cạnh BC CA AB của ABC. Gọi H G O lần lượt là trực tâm, trọng tâm, tâm đường tròn ngoại tiếp ABC, I là tâm đường tròn ngoại tiếp MNP. Chứng minh H G O I thẳng hàng.
Đề thi HSG Toán 11 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu triệu đồng (kết quả làm tròn đến hai chữ số phần thập phân). + Cho đa giác đều 18 cạnh. Nối tất cả các đỉnh với nhau. Chọn hai tam giác trong số các tam giác vuông tạo thành từ 3 đỉnh trong 18 đỉnh. Tính xác suất để chọn được hai tam giác có cùng chu vi. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt đáy, góc giữa SB và mặt đáy bằng 60. Gọi N là trung điểm của BC. a) Tính cosin của góc giữa hai đường thẳng SD và AN. b) Gọi H, K là hai điểm lần lượt thuộc các đường thẳng SB và DN sao cho HK SB HK DN. Tính độ dài đoạn HK theo a.
Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2020 - 2021 sở GDĐT Cà Mau
Chủ Nhật ngày 18 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Cà Mau tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 11 cấp tỉnh năm học 2020 – 2021. Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Cà Mau gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi Olympic 243 Toán 11 năm 2021 sở GDĐT Quảng Nam