Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập phân số Toán 6 Kết Nối Tri Thức Với Cuộc Sống

Tài liệu gồm 180 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề phân số trong chương trình môn Toán 6 bộ sách Kết Nối Tri Thức Với Cuộc Sống. Chương 6 . Phân số 1. Bài số 23 . Mở rộng khái niệm phân số. Phân số bằng nhau 1. A Kiến thức cần nhớ 1. B Kĩ năng giải toán 1. + Dạng 1. Nhận biết phân số, viết phân số 1. + Dạng 2. Biểu thị các số đo (độ dài, diện tích, …) dưới dạng phân số với đơn vị cho trước 3. + Dạng 3. Viết tập hợp các số nguyên thỏa mãn các điều kiện liên quan đến phân số 4. + Dạng 4. Tìm điều kiện để biểu thức A/B là một phân số 5. + Dạng 5. Tìm điều kiện để một biểu thức phân số có giá trị là một số nguyên 6. + Dạng 6. Nhận biết các cặp phân số bằng nhau 7. + Dạng 7. Chuyển một phân số có mẫu âm thành một phân số bằng nó có mẫu dương 8. + Dạng 8. Lập các cặp phân số bằng nhau từ đẳng thức cho trước 8. + Dạng 9. Tìm số nguyên chưa biết thỏa mãn điều kiện bằng nhau của phân số 10. + Dạng 10. Chuyển một phân số có mẫu âm thành một phân số bằng nó có mẫu dương 13. + Dạng 11. Điền số thích hợp vào chỗ trống 13. + Dạng 12. Nhận biết các cặp phân số bằng nhau 15. + Dạng 13. Viết các phân số bằng với một phân số cho trước 16. + Dạng 14. Giải thích sự bằng nhau của các phân số 17. + Dạng 15. Nhận biết phân số tối giản 17. + Dạng 16. Rút gọn phân số 18. + Dạng 17. Chọn ra các phân số bằng nhau 21. + Dạng 18. Biểu thị các số đo (độ dài, diện tích, …) dưới dạng phân số với số đo cho trước 22. + Dạng 19. Tìm các phân số bằng với phân số đã cho 23. C Bài tập 24. 1. Bài tập rèn luyện 25. 2. Bài tập bổ sung 32. 3. Bài tập trắc nghiệm 35. Bài số 24 . So sánh phân số. Hỗn số dương 38. A Kiến thức cần nhớ 38. B Kĩ năng giải toán 38. + Dạng 1. Tìm mẫu chung nhỏ nhất của các phân số 38. + Dạng 2. Viết các phân số dưới dạng phân số có mẫu dương cho trước 40. + Dạng 3. Quy đồng mẫu số các phân số 41. + Dạng 4. So sánh các phân số đưa được về cùng mẫu 44. + Dạng 5. So sánh các phân số không cùng mẫu 44. + Dạng 6. So sánh hai đại lượng cùng loại (thời gian, khối lượng, độ dài, …) 46. + Dạng 7. Bài toán có lời văn 47. + Dạng 8. Viết phân số dưới dạng hỗn số và ngược lại 47. C Bài tập 48. 1. Bài tập rèn luyện 48. 2. Bài tập bổ sung 53. 3. Bài tập trắc nghiệm 55. Luyện tập chung 58. A Mở rộng khái niệm phân số. Phân số bằng nhau 58. 1. BÀI TẬP 63. 2. BÀI TẬP 67. B So sánh phân số. Hốn số dương 69. Bài số 25 . Phép cộng và phép trừ phân số 76. A Kiến thức cần nhớ 76. B Kĩ năng giải toán 76. + Dạng 1. Thực hiện phép cộng phân số 76. + Dạng 2. Điều dấu thích hợp (<, >, =) vào chỗ trống 77. + Dạng 3. Tìm số chưa biết trong một đẳng thức 78. + Dạng 4. Tính nhanh tổng của nhiều phân số 79. + Dạng 5. Cộng hai phân số 82. + Dạng 6. Bài toán có lời văn 83. + Dạng 7. Tìm số chưa biết 84. + Dạng 8. Tìm số đối của phân số 84. + Dạng 9. Trừ các phân số 85. + Dạng 10. Tìm số chưa biết 87. + Dạng 11. Bài toán có lời văn 88. + Dạng 12. Tính tổng của dãy các phân số theo quy luật 89. C Bài tập 90. 1. Bài tập rèn luyện 90. 2. Bài tập bổ sung 95. 3. Bài tập trắc nghiệm 100. D CÂU HỎI TRẮC NGHIỆM 102. Bài số 26 . Phép nhân và phép chia phân số 110. A Kiến thức cần nhớ 110. B Kĩ năng giải toán 110. + Dạng 1. Thực hiện phép nhân phân số 110. + Dạng 2. Viết một phân số dưới dạng tích của hai phân số thỏa mãn điều kiện cho trước 111. + Dạng 3. Tìm số chưa biết trong một đẳng thức có chứa phép nhân phân số 111. + Dạng 4. Thực hiện phép nhân phân số 112. + Dạng 5. Tính giá trị của biểu thức 114. + Dạng 6. Bài toán có lời văn 116. + Dạng 7. Tìm nghịch đảo của một số cho trước 117. + Dạng 8. Thực hiện phép chia phân số 118. + Dạng 9. Thực hiện phép chia phân số 119. + Dạng 10. Tình số chưa biết trong một đẳng thức có chứa phép nhân phân số 120. + Dạng 11. Bài toán có lời văn 120. + Dạng 12. Tính giá trị của biểu thức 121. C Bài tập 122. 1. Bài tập rèn luyện 122. 2. Bài tập trắc nghiệm 126. Bài số 27 . Hai bài toán về phân số 131. A Kiến thức cần nhớ 131. B Kĩ năng giải toán 131. + Dạng 1. Tìm giá trị phân số của một số cho trước 131. + Dạng 2. Bài toán có lời văn 132. + Dạng 3. Tìm một số biết giá trị một phân số của nó 133. + Dạng 4. Bài toán có lời văn 133. C Bài tập 134. 1. Bài tập rèn luyện 134. 2. Bài tập bổ sung 136. 3. Bài tập trắc nghiệm 138. Luyện tập chung 141. A Phép cộng và phép trừ phân số 141. B Phép nhân và phép chia phân số 143. C Hai bài toán về phân số 145. Ôn tập chương VI 151. A Kiến thức cần nhớ 151. B Câu hỏi trắc nghiệm 152. C Bài tập 153. 1. Bài tập rèn luyện 153. 2. Bài tập bổ sung 158. 3. Bài tập về nhà 164. D Đề kiểm tra cuối chương 167. 1. Đề số 1 167. 2. Đề số 2 169. Bài số 28 . Ôn tập chương VII 171. Ôn tập chương VII 171. A Kiến thức trọng tâm 171. B Câu hỏi trắc nghiệm 171. C Bài tập 173. 1. Bài tập rèn luyện 173. 2. Bài tập bổ sung 177.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép trừ hai số nguyên
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép trừ hai số nguyên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Hiểu quy tắc trừ hai số nguyên. Kĩ năng: + Thực hiện được phép trừ hai số nguyên. + Vận dụng được quy tắc dấu ngoặc và quy tắc chuyển vế trong tính toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Thực hiện phép trừ hai số nguyên. Muốn trừ số nguyên a cho số nguyên b, ta cộng a với số đối của b. Dạng 2 . Vận dụng quy tắc dấu ngoặc. Khi bỏ dấu ngoặc có dấu “-” đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc: + Dấu “+” chuyển thành dấu “-“. + Dấu “-” chuyển thành dấu “+”. Tổng quát: A B D A B D. Khi bỏ dấu ngoặc có dấu “+” đằng trước thì dấu của các số hạng trong dấu ngoặc vẫn giữ nguyên. Tổng quát: A B D A B D. Dạng 3 . Vận dụng quy tắc chuyển vế. Khi biến đổi các đẳng thức ta thường áp dụng: + Nếu a b thì a c b c. + Nếu a c b c thì a b. + Nếu a b thì b a. Quy tắc: Khi chuyển vế một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó.
Chuyên đề phép cộng hai số nguyên
Tài liệu gồm 15 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép cộng hai số nguyên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Hiểu quy tắc cộng hai số nguyên. Kĩ năng: + Thực hiện được phép cộng hai số nguyên. + Vận dụng được các tính chất giao hoán, kết hợp, cộng với số 0, cộng với số đối trong tính toán (tính viết, tính nhẩm và tính nhanh một cách hợp lí). I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Thực hiện phép cộng số nguyên. Cộng hai số nguyên cùng dấu: + Với a và b nguyên dương a b a b. + Với a và b nguyên âm a b a b. Cộng hai số nguyên khác dấu: + Với hai số đối nhau a và -a: a a 0. + Muốn cộng hai số nguyên khác dấu không đối nhau, ta tìm hiệu giá trị tuyệt đối của chúng rồi đặt trước kết quả tìm được dấu của số có giá trị tuyệt đối lớn hơn. Dạng 2 : Áp dụng tính chất của phép cộng số nguyên để tính tổng. + Tính chất giao hoán. + Tính chất kết hợp. + Cộng với số 0. + Cộng với số đối.
Chuyên đề tập hợp các số nguyên
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tập hợp các số nguyên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Nhận biết được số nguyên âm, tập hợp các số nguyên. + Nhận biết được số đối của một số nguyên. + Nhận biết được thứ tự trong tập hợp các số nguyên. + Nhận biết được ý nghĩa của số nguyên âm trong một số bài toán thực tiễn. Kĩ năng: + Biểu diễn được số nguyên trên trục số. + So sánh được hai số nguyên cho trước. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định số nguyên. Biểu diễn số nguyên trên trục số. Dạng 2 : So sánh các số nguyên. Khi biểu diễn trên trục số (nằm ngang) điểm a nằm bên trái điểm b thì số nguyên a nhỏ hơn số nguyên b. Số nguyên b gọi là số liền sau của số nguyên a nếu a < b và không có số nguyên nào nằm giữa a và b; a cũng được gọi là số liền trước của số b. Dạng 3 : Giá trị tuyệt đối của số nguyên. Giá trị tuyệt đối của một số nguyên a là khoảng cách từ điểm a đến điểm 0 trên trục số. Một số tính chất: 1) Giá trị tuyệt đối của số 0 là số 0. 2) Giá trị tuyệt đối của một số nguyên dương là chính nó. 3) Giá trị tuyệt đối của một số nguyên âm là số đối của nó. 4) Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn thì lớn hơn. 5) Hai số đối nhau có giá trị tuyệt đối bằng nhau.
Chuyên đề bội chung và bội chung nhỏ nhất
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề bội chung và bội chung nhỏ nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Hiểu khái niệm bội chung, bội chung nhỏ nhất của hai hay nhiều số. + Nhận biết được mối quan hệ giữa ước chung lớn nhất và bội chung nhỏ nhất. Kĩ năng: + Biết cách tìm bội chung của hai hay nhiều số bằng cách phân tích các số ra thừa số nguyên tố. + Biết tìm bội chung thông qua tìm bội chung nhỏ nhất. + Tìm được bội chung nhỏ nhất của hai số khi biết ước chung lớn nhất của chúng. + Thực hành vận dụng giải một số dạng toán liên quan đến bội chung và bội chung nhỏ nhất. I. LÍ THUYẾT TRỌNG TÂM 1. Bội chung: Bội chung của hai hay nhiều số là bội của tất cả các số đó. 2. Bội chung nhỏ nhất: Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó. 3. Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố: Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau: + Bước 1. Phân tích mỗi số ra thừa số nguyên tố. + Bước 2. Chọn ra các thừa số nguyên tố chung và riêng. + Bước 3. Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. 4. Cách tìm bội chung thông qua tìm BCNN: Để tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó. II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm bội chung và bội chung nhỏ nhất của các số cho trước. Dạng 2 : Quan hệ giữa ước chung lớn nhất và bội chung nhỏ nhất. Tích của hai số bằng tích của ƯCLN và BCNN của chúng.