Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mặt tròn xoay, mặt nón - trụ - cầu - Đặng Việt Đông

Tài liệu gồm 64 trang tóm tắt lý thuyết cơ bản và tuyển chọn các bài toán chuyên đề mặt tròn xoay, mặt nón – trụ – cầu có lời giải chi tiết. I. HÌNH NÓN – KHỐI NÓN 1. Mặt nón tròn xoay + Trong mặt phẳng (P), cho 2 đường thẳng d, Δ cắt nhau tại O và chúng tạo thành góc β với 0 < β < 90 độ. Khi quay mp(P) xung quanh trục Δ với góc β không thay đổi được gọi là mặt nón tròn xoay đỉnh O. + Người ta thường gọi tắt mặt nón tròn xoay là mặt nón. Đường thẳng Δ gọi là trục, đường thẳng d được gọi là đường sinh và góc 2β gọi là góc ở đỉnh. 2. Hình nón tròn xoay + Cho ΔOIM vuông tại I quay quanh cạnh góc vuông OI thì đường gấp khúc OIM tạo thành một hình, gọi là hình nón tròn xoay (gọi tắt là hình nón). + Đường thẳng OI gọi là trục, O là đỉnh, OI gọi là đường cao và OM gọi là đường sinh của hình nón. + Hình tròn tâm I, bán kính r = IM là đáy của hình nón. 3. Công thức diện tích và thể tích của hình nón Cho hình nón có chiều cao là h, bán kính đáy r và đường sinh là l thì có: + Diện tích xung quanh: Sxq=π.r.l + Diện tích đáy (hình tròn): Str=π.r^2 + Diện tích toàn phần hình tròn: S = Str + Sxq + Thể tích khối nón: Vnón = 1/3.Str.h = 1/3π.r^2.h 4. Tính chất: Nếu cắt mặt nón tròn xoay bởi mặt phẳng đi qua đỉnh thì có các trường hợp sau xảy ra: + Mặt phẳng cắt mặt nón theo 2 đường sinh → Thiết diện là tam giác cân + Mặt phẳng tiếp xúc với mặt nón theo một đường sinh. Trong trường hợp này, người ta gọi đó là mặt phẳng tiếp diện của mặt nón. Nếu cắt mặt nón tròn xoay bởi mặt phẳng không đi qua đỉnh thì có các trường hợp sau xảy ra: + Nếu mặt phẳng cắt vuông góc với trục hình nón → giao tuyến là một đường tròn. + Nếu mặt phẳng cắt song song với 2 đường sinh hình nón → giao tuyến là 2 nhánh của 1 hypebol. + Nếu mặt phẳng cắt song song với 1 đường sinh hình nón → giao tuyến là 1 đường parabol. [ads] II. HÌNH TRỤ – KHỐI TRỤ 1. Mặt trụ tròn xoay + Trong mp(P) cho hai đường thẳng Δ và l song song nhau, cách nhau một khoảng r. Khi quay mp(P) quanh trục cố định Δ thì đường thẳng l sinh ra một mặt tròn xoay được gọi là mặt trụ tròn xoay hay gọi tắt là mặt trụ. + Đường thẳng Δ được gọi là trục. + Đường thẳng l được gọi là đường sinh. + Khoảng cách r được gọi là bán kính của mặt trụ. 2. Hình trụ tròn xoay Khi quay hình chữ nhật ABCD xung quanh đường thẳng chứa một cạnh, chẳng hạn cạnh AB thì đường gấp khúcABCD tạo thành một hình, hình đó được gọi là hình trụ tròn xoay hay gọi tắt là hình trụ. + Đường thẳng AB được gọi là trục. + Đoạn thẳng CD được gọi là đường sinh. + Độ dài đoạn thẳng AB = CD = h được gọi là chiều cao của hình trụ. + Hình tròn tâm A, bán kính r = AD và hình tròn tâm B, bán kính r = BC được gọi là 2 đáy của hình trụ. + Khối trụ tròn xoay, gọi tắt là khối trụ, là phần không gian giới hạn bởi hình trụ tròn xoay kể cả hình trụ. 3. Công thức tính diện tích và thể tích của hình trụ Cho hình trụ có chiều cao là h và bán kính đáy bằng r, khi đó: + Diện tích xung quanh của hình trụ: Sxq = 2πrh + Diện tích toàn phần của hình trụ: Stp=Sxq+Sđ=2πrh+2πr2 + Thể tích khối trụ: V = Bh = πr^2h 4. Tính chất + Nếu cắt mặt trụ tròn xoay (có bán kính là r) bởi một mp(α) vuông góc với trục Δ thì ta được đường tròn có tâm trên Δ và có bán kính bằng r với r cũng chính là bán kính của mặt trụ đó. + Nếu cắt mặt trụ tròn xoay (có bán kính là r) bởi một mp(α) không vuông góc với trục Δ nhưng cắt tất cả các đường sinh, ta được giao tuyến là một đường elíp có trụ nhỏ bằng 2r và trục lớn bằng 2r/sinα trong đó φ là góc giữa trục Δ và mp(α) với 0 < φ < 90 độ. Cho mp(α) song song với trục Δ của mặt trụ tròn xoay và cách Δ một khoảng k. + Nếu k < r thì mp(α) cắt mặt trụ theo hai đường sinh → thiết diện là hình chữ nhật. + Nếu k = r thì mp(α) tiếp xúc với mặt trụ theo một đường sinh. + Nếu k > r thì mp(α) không cắt mặt trụ. III. MẶT CẦU – KHỐI CẦU 1. Vị trí tương đối giữa mặt cầu và mặt phẳng Cho mặt cầu S(O; R) và mặt phẳng (P). Gọi d = d(O; (P)). + Nếu d < R thì (P) cắt (S) theo giao tuyến là đường tròn nằm trên (P), có tâm H và bán kính. + Nếu d = R thì (P) tiếp xúc với (S) tại tiếp điểm H. ((P) được gọi là tiếp diện của (S)). + Nếu d > R thì (P) và (S) không có điểm chung. Khi d = 0 thì (P) đi qua tâm O và được gọi là mặt phẳng kính, đường tròn giao tuyến có bán kính bằng R được gọi là đường tròn lớn. 2. Vị trí tương đối giữa mặt cầu và đường thẳng Cho mặt cầu S(O; R) và đường thẳng Δ. Gọi d = d(O; Δ). + Nếu d < R thì Δ cắt (S) tại hai điểm phân biệt. + Nếu d = R thì Δ tiếp xúc với (S). (được gọi là tiếp tuyến của (S)). + Nếu d > R thì Δ và (S) không có điểm chung. 3. Xác định tâm mặt cầu ngoại tiếp khối đa diện a. Mặt cầu ngoại tiếp hình chóp + Cách 1: Nếu (n – 2) đỉnh của đa diện nhìn hai đỉnh còn lại dưới một góc vuông thì tâm của mặt cầu là trung điểm của đoạn thẳng nối hai đỉnh đó. + Cách 2: Để xác định tâm của mặt cầu ngoại tiếp hình chóp. – Xác định trục Δ của đáy (Δ là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy). – Xác định mặt phẳng trung trực (P) của một cạnh bên. – Giao điểm của (P) và Δ là tâm của mặt cầu ngoại tiếp hình chóp. b. Mặt cầu ngoại tiếp hình lăng trụ đứng – Xác định trục Δ của hai đáy (Δ là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy). – Trung điểm đoạn nối hai tâm đa giác đáy là tâm của mặt cầu ngoại tiếp hình chóp

Nguồn: toanmath.com

Đọc Sách

Toàn tập khối tròn xoay cơ bản
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề khối tròn xoay cơ bản lớp 12 THPT. Cơ bản khối trụ (phần 1). Cơ bản khối trụ (phần 2). Cơ bản khối trụ (phần 3). Cơ bản khối nón (phần 1). Cơ bản khối nón (phần 2). Cơ bản khối nón (phần 3). Cơ bản khối cầu (phần 1). Cơ bản khối cầu (phần 2). Cơ bản khối cầu (phần 3). Cơ bản khối cầu (phần 4). Cơ bản khối cầu (phần 5). Cơ bản khối cầu (phần 6). Cơ bản tổng hợp khối tròn xoay (phần 1). Cơ bản tổng hợp khối tròn xoay (phần 2). Cơ bản tổng hợp khối tròn xoay (phần 3). Cơ bản tổng hợp khối tròn xoay (phần 4). Cơ bản tổng hợp khối tròn xoay (phần 5). Cơ bản tổng hợp khối tròn xoay (phần 6). Cơ bản tổng hợp khối tròn xoay (phần 7). Cơ bản tổng hợp khối tròn xoay (phần 8).
Bài giảng mặt cầu, khối cầu
Tài liệu gồm 29 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề mặt cầu, khối cầu, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 2: Mặt nón – mặt trụ – mặt cầu. Mục tiêu : Kiến thức : + Nắm được các trường hợp giao của mặt cầu với mặt phẳng, giao của mặt cầu với đường thẳng, vị trí của một điểm với mặt cầu. + Nắm vững công thức tính diện tích mặt cầu và thể tích khối cầu. Kĩ năng : + Biết vẽ hình trong từng bài toán cụ thể. + Biết tính bán kính, diện tích của mặt cầu và thể tích của khối cầu. + Giải được các bài toán liên quan đến khối cầu như bài toán tương giao với đường thẳng hay mặt phẳng, bài toán cực trị, bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Câu hỏi lí thuyết về mặt cầu, khối cầu. Cần nắm vững phần kiến thức trọng tâm ở trên. Dạng 2 . Tính bán kính, diện tích mặt, thể tích khối cầu. Bài toán tương giao của mặt cầu với đường thẳng hay mặt phẳng. Nắm vững các công thức tính diện tích và thể tích. Nắm vững các trường hợp tương giao của mặt cầu với đường thẳng hay mặt phẳng để rồi vận dụng các kiến thức của phần quan hệ song song, quan hệ vuông góc, các hệ thức lượng trong tam giác … để giải các bài tập. Dạng 3 . Mặt cầu ngoại tiếp hình đa diện. Các khái niệm cần lưu ý: + Mặt cầu ngoại tiếp hình đa diện: là mặt cầu mà nó đi qua tất cả các đỉnh của hình đa diện. Tâm của mặt cầu ngoại tiếp cách đều tất cả các đỉnh của hình đa diện. + Trục của đa giác: là đường thẳng đi qua tâm của đường tròn ngoại tiếp đa giác và vuông góc với mặt phẳng chứa đa giác. Mọi điểm nằm trên trục thì cách đều các đỉnh của đa giác và ngược lại. + Mặt phẳng trung trực của đoạn thẳng: Là mặt phẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng đó. Mọi điểm nằm trên mặt phẳng trung trực của đoạn thẳng thì cách đều hai điểm mút của đoạn thẳng và ngược lại. Phương pháp giải: Đối với bài toán mặt cầu ngoại tiếp khối đa diện thì mấu chốt của vấn đề là phải xác định được tâm của mặt cầu ngoại tiếp khối đa diện đó. Khi xác định được tâm của mặt cầu ngoại tiếp thì ta có thể tính được các yếu tố còn lại như bán kính, diện tích mặt cầu, thể tích của khối cầu. + Cách 1. Tìm một điểm cách đều các đỉnh của khối đa diện theo định nghĩa mặt cầu. + Cách 2. Tâm mặt cầu ngoại tiếp khối đa diện là giao điểm của trục đường tròn ngoại tiếp đa giác đáy và mặt phẳng trung trực của một cạnh bên. + Cách 3. Dựa vào trục của đường tròn ngoại tiếp đa giác đáy và trục của đường tròn ngoại tiếp một mặt bên. Dạng 4 . Mặt cầu nội tiếp khối đa diện. Mặt cầu nội tiếp khối đa diện là mặt cầu tiếp xúc với tất cả các mặt của khối đa diện. Phương pháp giải: Xác định được và hiểu rõ khoảng cách từ tâm của mặt cầu nội tiếp khối đa diện tới các mặt của khối đa diện chính là bán kính của mặt cầu nội tiếp khối đa diện. Từ đó có thể tính được bán kính, diện tích xung quanh của mặt cầu, thể tích của khối cầu và giải được các bài toán liên quan. Dạng 5 . Bài toán cực trị. Tương tự như bài toán cực trị về hình nón, hình trụ ta thường đánh giá trực tiếp dựa vào hình hoặc biểu diễn hay quy đại lượng cần tìm cực trị phụ thuộc vào một yếu tố sau đó đánh giá tìm ra đáp án. Dạng 6 . Bài toán thực tế. Nắm vững kiến thức các dạng toán trên để giải bài toán thực tế liên quan đến mặt cầu. Dạng 7 . Dạng toán tổng hợp. Sử dụng kiến thức về hình nón, hình trụ, hình cầu ở các dạng toán trên để giải bài toán tổng hợp.
Bài giảng mặt trụ, hình trụ và khối trụ
Tài liệu gồm 24 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề mặt trụ, hình trụ và khối trụ, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 2: Mặt nón – mặt trụ – mặt cầu. MỤC TIÊU : Kiến thức : + Nắm được định nghĩa mặt trụ tròn xoay, hình trụ tròn xoay và khối trụ tròn xoay. + Nắm vững các công thức tính diện tích xung quanh của hình trụ, diện tích đáy của hình trụ, diện tích toàn phần của hình trụ, thể tích của khối trụ. Kĩ năng : + Nhận biết được một khối tròn xoay là khối trụ. + Tính được các yếu tố liên quan đến hình trụ, khối trụ như chiều cao, diện tích xung quanh, diện tích toàn phần, diện tích thiết diện, thể tích của khối trụ. + Giải được các bài toán liên quan đến khối trụ như bài toán cực trị, bài toán thực tế. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Câu hỏi lý thuyết về mặt trụ, hình trụ, khối trụ. Nắm vững lý thuyết về mặt trụ, hình trụ, và khối trụ. Dạng 2 : Tính diện tích xung quanh, diện tích toàn phần, diện tích thiết diện, chiều cao, bán kính đáy, diện tích đáy của hình trụ. Nắm vững các công thức về diện tích xung quanh, diện tích toàn phần, diện tích đáy. Biết sử dụng các kết quả của phần kiến thức quan hệ song song, quan hệ vuông góc, các hệ thức lượng trong tam giác … để áp dụng vào tính toán. Dạng 3 : Thể tích khối trụ, bài toán cực trị. Tương tự như dạng toán 3 của phần khối nón. Dạng 4 : Bài toán thực tế về khối trụ. Nắm vững kiến thức ở các dạng toán 1, dạng toán 2 và dạng toán 3 để áp dụng vào giải bài toán thực tế về khối trụ vì về bản chất vẫn là các bài toán xoay quanh hình trụ, khối trụ.
Bài giảng mặt nón, hình nón và khối nón
Tài liệu gồm 30 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề mặt nón, hình nón và khối nón, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 2: Mặt nón – mặt trụ – mặt cầu. Mục tiêu : Kiến thức : + Nắm được định nghĩa mặt nón tròn xoay, hình nón tròn xoay và khối nón tròn xoay. + Nắm được các công thức tính diện tích xung quanh của hình nón, diện tích đáy của hình nón, diện tích toàn phần của hình nón, thể tích của khối nón. Kĩ năng : + Nhận biết được một khối tròn xoay là khối nón. + Tính được các yếu tố liên quan đến khối nón như độ dài đường sinh, chiều cao, góc ở đỉnh, diện tích xung quanh, diện tích toàn phần, thiết diện, thể tích của khối nón. + Giải được các bài toán nâng cao liên quan đến khối nón như bài toán cực trị, bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Câu hỏi lý thuyết về mặt nón, hình nón, khối nón. Cần nắm vững lí thuyết trọng tâm về mặt nón, hình nón, khối nón ở trên. Dạng 2 : Tính diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện của hình nón. Nắm vững các công thức về diện tích xung quanh, diện tích toàn phần, diện tích đáy. Biết sử dụng các kết quả của phần kiến thức quan hệ song song, quan hệ vuông góc, các hệ thức lượng trong tam giác … để áp dụng vào tính toán. Dạng 3 : Tính thể tích khối nón, bài toán cực trị. Nhìn vào công thức tính thể tích khối nón, ta thấy cần xác định chiều cao và diện tích đáy (bán kính đáy) của khối nón. Đối với bài toán cực trị ta thường tính toán đưa đại lượng cần tìm cực trị phụ thuộc vào một biến sau đó dùng đánh giá (sử dụng bất đẳng thức, khảo sát hàm số …) để tìm ra kết quả. Dạng 4 : Bài toán thực tế về hình nón, khối nón. Sử dụng tổng hợp các kiến thức từ các dạng toán 1, dạng toán 2 và dạng toán 3 để giải các bài toán thực tế về hình nón hay khối nón.