Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài tập mặt cầu ngoại tiếp hình chóp - Nguyễn Thanh Hậu

Tài liệu gồm 9 trang trình bày 4 phương pháp xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp và bài tập áp dụng có lời giải chi tiết. Bài toán mặt cầu ngoại tiếp hình chóp xuất hiện nhiều trong các đề kiểm tra, các đề thi vào đại học. Qua thực tế giảng dạy chúng tôi thấy rằng: Nhiều học sinh tỏ ra lúng túng khi gặp các bài toán có liên quan đến mặt cầu. Bài viết này cùng trao đổi với các em và bạn đồng nghiệp một vài kỹ thuật giải toán thông qua các ví dụ về mặt cầu ngoại tiếp hình chóp. Các vấn đề thường gặp liên quan đến bài toán mặt cầu ngoại tiếp hình chóp kiểu như: Chứng minh các điểm nào đó cùng nằm trên một mặt cầu? Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp? Hay tính diện tích mặt cầu ngoại tiếp hình chóp hay thể tích khối cầu ngoại tiếp khối chóp?. [ads] Tóm tắt nội dung tài liệu : I. Cơ sở lí thuyết II. Các phương pháp xác định tâm mặt cầu ngoại tiếp hình chóp Bài toán: Xác định tâm I và tính bán kính R của mặt cầu ngoại tiếp hình chóp SA1A2…An. Phương pháp 1: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Xác định tâm O đường tròn ngoại tiếp đa giác đáy A1A2…An. + Dựng trục Δ của đường tròn ngoại tiếp đa giác đáy A1A2…An (Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy). + Vẽ mặt phẳng trung trực (P) của một cạnh bên bất kì của hình chóp. + Giả sử I= Δ ∩ (P) khi đó I là tâm mặt cầu ngoại tiếp cần dựng. Phương pháp 2: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Dựng trục Δ1 của đường tròn ngoại tiếp đa giác đáy A1A2…An.(Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy.) + Dựng trục Δ2 của đường tròn ngoại tiếp tam giác của mặt bên sao cho Δ1 và Δ2 đồng phẳng. + Giả sử I = Δ1 ∩ Δ2, khi đó I là tâm mặt cầu ngoại tiếp. Phương pháp 3: Ta chứng minh các đỉnh của hình chóp cùng nhìn hai đỉnh còn lại của hình chóp dưới một góc vuông hoặc tất cả các đỉnh của hình chóp cùng nhìn hai điểm nào đó dưới một góc vuông. Phương pháp 4: Trong không gian ta dự đoán điểm đặc biệt I nào đó rồi chứng minh I cách đều các đỉnh của hình chóp. III. Cách xác định tâm và tính bán kính mặt cầu ngoại tiếp của một số hình chóp đặc biệt IV. Các ví dụ minh họa

Nguồn: toanmath.com

Đọc Sách

Bài tập tọa độ không gian Oxyz mức độ vận dụng có đáp án và lời giải chi tiết
Tài liệu gồm 130 trang tuyển chọn các bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz trong chương trình Hình học 12 chương 3, có đáp án và lời giải chi tiết. Các bài tập được trích dẫn trong các đề thi thử môn Toán, với phần nhiều là các bài toán ở mức độ nâng cao. Lời giải các bài toán được trình bày rõ ràng chi tiết. Nội dung tài liệu gồm 5 phần: Phần 1. Hệ trục tọa độ Phần 2. Phương trình mặt phẳng Phần 3. Phương trình đường thẳng Phần 4. Phương trình mặt cầu Phần 5. Tổng hợp góc và khoảng cách
Bài tập trắc nghiệm phương pháp tọa độ trong không gian có đáp án
Tài liệu gồm 156 trang tuyển chọn bài tập trắc nghiệm phương pháp tọa độ trong không gian có đáp án trong chương trình Hình học 12 chương 3, được biên soạn bởi các tác giả: Nguyễn Ngọc Dũng, Tạ Nguyễn Đình Đăng, Vương Phú Quý, Nguyễn Viết Sinh. Các bài toán được trích dẫn từ các đề thi thử môn Toán của các trường THPT và sở GD – ĐT trên toàn quốc. Các bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz với hệ thống bài tập đầy đủ, đa dạng, có độ khó từ cơ bản đến nâng cao, thích hợp với tất cả các đối tượng học sinh. Các bài toán được phân loại theo các bài học, bao gồm: + Bài 1. Hệ trục tọa độ trong không gian + Bài 2. Phương trình mặt phẳng + Bài 3. Phương trình đường thẳng + Bài 4. Vị trí tương đối + Bài 5. Góc + Bài 6. Khoảng cách + Bài 7. Mặt cầu – Phương trình mặt cầu + Bài 8. Phương pháp tọa độ hóa trong không gian + Bài 9. Các bài toán cực trị hình học [ads] Xem thêm một số tài liệu khác cùng tác giả: + Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án (Giải tích 12 chương 3) + Bài tập trắc nghiệm Hình học 12 chuyên đề nón – trụ – cầu (Hình học 12 chương 2)
Bài tập trắc nghiệm chuyên đề hình học tọa độ trong không gian có lời giải chi tiết
Tài liệu gồm 100 trang phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề hình học tọa độ trong không gian Oxyz có lời giải chi tiết, các bài tập được chọn lọc và trích dẫn trong các đề thi thử môn Toán. Các dạng toán tọa độ Oxyz gồm : + Dạng 1. Tọa độ điểm và vectơ trong không gian Oxyz + Dạng 2. Phương trình mặt cầu + Dạng 3. Phương trình mặt phẳng + Dạng 4. Phương trình đường thẳng + Dạng 5. Vị trí tương đối của mặt cầu, mặt phẳng và đường thẳng + Dạng 6. Tìm tọa độ điểm thỏa mãn điều kiện cho trước + Dạng 7. Cực trị trong tọa độ không gian Oxyz
Bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz - Nguyễn Khánh Nguyên
Tài liệu gồm 18 trang tổng hợp 146 câu hỏi trắc nghiệm phương pháp tọa độ trong không gian Oxyz theo các chủ đề: + Chủ đề 1. Hệ tọa độ Oxyz + Chủ đề 2. Phương trình mặt phẳng + Chủ đề 3. Phương trình đường thẳng + Chủ đề 4. Phương trình mặt cầu [ads] Trích dẫn tài liệu : + Cho bốn điểm A (1; -2; 0), B (0; -1; 1), C (2; 1; -1), D (3; 1; 4). Khẳng định nào đúng? A. Bốn điểm A, B, C, D là bốn điểm của một hình vuông B. Bốn điểm A, B, C, D là bốn điểm của một hình chữ nhật C. Bốn điểm A, B, C, D là bốn điểm của một hình thoi D. Bốn điểm A, B, C, D là bốn điểm của một tứ diện + Cho hai điểm A (4; 6; 2), B(2; 2; 0) và mặt phẳng (P): x + y + z = 0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó. + Xét các điểm A (0; 0; 1), B (m; 0; 0), C (0; n; 0) và D (1; 1; 1) với m > 0, n > 0 và m + n = 1. Biết rằng khi m, n thay đổi, tồn tại một mặt cầu cố định tiếp xúc với mặt phẳng (ABC) và đi qua D. Tính bán kính R của mặt cầu đó?