Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Đội Cấn Vĩnh Phúc

Nội dung Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Đội Cấn Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Đội Cấn, tỉnh Vĩnh Phúc; đề thi gồm 06 trang, hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án mã đề 111. Trích dẫn Đề khảo sát lần 1 Toán lớp 11 năm 2023 – 2024 trường THPT Đội Cấn – Vĩnh Phúc : + Khi kí hợp đồng lao động với người lao động với bản hợp đồng có thời hạn 5 năm, một công ty đề xuất hai phương án trả lương như sau : Phương án 1: Năm thứ nhất, tiền lương là 120 triệu đồng, kể từ năm thứ hai trở đi, mỗi năm tiền lương tăng 22 triệu. Phương án 2: Quý thứ nhất, tiền lương là 30 triệu đồng, kể từ quý thứ hai, mỗi quý tăng 1,5 triệu đồng. Phương án 3 : Tháng thứ nhất, tiền lương là 6 triệu đồng, kể từ tháng thứ 2, mỗi tháng tăng 300 nghìn đồng. Nếu là người lao động được tuyển dụng, em sẽ chọn phương án nào để sau khi kết thúc hợp đồng, tổng số tiền lương thu được là nhiều nhất? A. Chọn phương án 2. B. Chọn phương án 1. C. Chọn phương án 3. D. Các phương án đều như nhau. + Cho tứ diện ABCD trong đó tam giác BCD không cân. Gọi M N lần lượt là trung điểm của AB CD và G là trung điểm MN. Gọi A1 là giao điểm của AG và (BCD). Khẳng định nào dưới đây đúng? A. A1 là tâm đường tròn ngoại tiếp tam giác BCD. B. A1 là trọng tâm tam giác BCD. C. A1 là tâm đường tròn nội tiếp tam giác BCD. D. A1 là trực tâm tam giác BCD. + Một cột điện dài 11 m đứng cách bức tường một khoảng 1,75 m, bức tường cao 3,75 m (Hình 1). Do gió bão, cột điện bị gãy, điểm cuối của cột tiếp xúc vuông góc với tường khiến cho bức tường bị nghiêng một góc α như trong Hình 2. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề HSG cấp trường Toán 11 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Thứ Tư ngày 10 tháng 03 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2020 – 2021. Đề HSG cấp trường Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG cấp trường Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Trong hệ tọa độ Oxy, cho hình thoi ABCD cạnh AC có phương trình là, hai đỉnh B, D lần lượt thuộc các đường thẳng. Biết rằng diện tích hình thoi bằng 75, đỉnh A có hoành độ âm. Tìm toạ độ các đỉnh hình thoi. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn BC = 2a đáy bé AD, AB. Mặt bên SAD là tam giác đều, M là một điểm di động trên AB, mặt phẳng (P) đi qua M và song song với SA, BC. a) Tìm thiết diện của hình chóp khi cắt bởi (P). Thiết diện là hình gì? b) Tính diện tích thiết diện theo a, b và x AM x b. Tìm x theo b để diện tích thiết diện lớn nhất. + Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC. Ta xây dựng dãy các tam giác sao cho là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương n ≥ 2, tam giác A B C là tam giác trung bình của tam giác A B C n n n. Với mỗi số nguyên dương n, kí hiệu Sn tương ứng là diện tích hình tròn ngoại tiếp tam giác A B C n n n. Tính tổng 1 2 n S S S S.
Đề chọn HSG Toán 11 vòng 1 năm 2020 - 2021 trường THPT Trần Nguyên Hãn - Hải Phòng
Đề chọn HSG Toán 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Trong mặt phẳng Oxy, cho hình bình hành ABCD, hình chiếu của điểm D lên AB, BC lần lượt là M(-2;2), N(2;-2). Biết rằng đường thẳng DB có phương trình là 3x – 5y + 1 = 0 và hoành độ điểm B lớn hơn 0. Tìm tọa độ điểm B. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập được bao nhiêu số có 4 chữ số đôi một khác nhau và chia hết cho 11 đồng thời tổng của 4 chữ số của nó cũng chia hết cho 11. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, M là trung điểm của SA và E là trung điểm của SB; P thuộc cạnh SC sao cho SC = 3SP. 1) Dựng giao điểm của DB với mặt phẳng (MPE). 2) Gọi N là một điểm thuộc cạnh SB, mặt phẳng (MNP) cắt SD tại Q. Chứng minh SB/SN + SD/SQ = 5.
Đề khảo sát học sinh giỏi Toán 11 năm 2020 - 2021 trường THPT Quế Võ 1 - Bắc Ninh
Đề khảo sát học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề khảo sát học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh : + Nhà anh A muốn khoan một cái giếng sâu 20 mét dùng để lấy nước cho sinh hoạt gia đình. Có hai cơ sở khoan giếng tính chi phí như sau: Cơ sở I: Mét thứ nhất 200 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét tăng thêm 60 nghìn đồng so với giá của mỗi mét trước đó. Cơ sở II: Mét thứ nhất 10 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét gấp 2 lần so với giá của mỗi mét trước đó.Hỏi gia đình anh A để tiết kiệm tiền thì nên chọn cơ sở nào để thuê, biết rằng hai cơ sở trên có chất lượng khoan là như nhau. + Cho hình lăng trụ tứ giác ABCD.A1B1C1D1, mặt phẳng (a) thay đổi và song song với hai đáy của lăng trụ lần lượt cắt các đoạn thẳng AB1, BC1, CD1, DA1 tại M, N, P, Q. Hãy xác định vị trí của mặt phẳng (a) để tứ giác MNPQ có diện tích nhỏ nhất. + Cho đa giác đều A1A2 … A2020 nội tiếp đường tròn tâm O, chọn ngẫu nhiên 4 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tứ giác có đúng một cạnh là cạnh của đa giác.
Đề chọn HSG Toán 11 cấp trường năm 2019 - 2020 trường THPT chuyên Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề chọn HSG Toán 11 cấp trường năm 2019 – 2020 trường THPT chuyên Vĩnh Phúc; đề gồm 01 trang với 05 bài toán dạng đề tự luận, thời gian làm bài thi 180 phút. Trích dẫn đề chọn HSG Toán 11 cấp trường năm 2019 – 2020 trường THPT chuyên Vĩnh Phúc : + Cho hai số nguyên a và b. Chứng minh rằng nếu a^5 ≡ b^5 (mod 97) thì a ≡ b (mod 97). + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Gọi I là tâm đường tròn nội tiếp tam giác. L, M, N lần lượt là các giao điểm thứ hai của AI, BI, CI với (O). Một đường tròn (w) thay đổi luôn đi qua I, L và cắt cạnh BC tại E, F (E nằm giữa B và F). Các đường thẳng LE, LF cắt (O) tại điểm P, Q. [ads] a) Chứng minh rằng tứ giác EFQP nội tiếp và đường thẳng PQ luôn đi qua một điểm cố định khi đường tròn (w) thay đổi. b) Đường thẳng PQ cắt AB, AC lần lượt tại H, K. Chứng minh rằng NH và MK cắt nhau tại một điểm nằm trên đường tròn (w). + Cho m ≤ n là hai số nguyên dương và một bảng có kích thước m x n gồm mn ô vuông đơn vị. Mỗi ô vuông có không quá một con kiến. Biết rằng với mỗi số nguyên dương k thuộc tập hợp {1, 2, 3, …, 78}, tồn tại một hàng hoặc một cột trong bảng có đúng k con kiến. a) Tìm giá trị nhỏ nhất có thể của m + n. b) Tìm giá trị nhỏ nhất có thể của số con kiến trên bảng đã cho.