Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giới hạn của dãy số bồi dưỡng học sinh giỏi Toán THPT

Tài liệu gồm 51 trang, được biên soạn bởi tác giả Cao Hoàng Hạ (Giáo viên trường THPT số 2 An Nhơn, tỉnh Bình Định), hướng dẫn một số phương pháp tìm giới hạn của dãy số, bồi dưỡng học sinh giỏi Toán THPT. Trong kỳ thi học sinh giỏi môn Toán cấp tỉnh và cấp quốc gia, bài toán tìm giới hạn của dãy số và các bài toán liên quan đến dãy số thường xuyên xuất hiện và là một trong những bài toán cơ bản của đề thi. Việc tạo cho học sinh một cách nhìn tổng quát cho bài toán tìm giới hạn của dãy số là rất quan trọng, từ đó giúp các em có tư duy rộng hơn trong việc đánh giá tính chất của một dãy số, và lựa chọn phương pháp thích hợp nhất để tìm giới hạn của một dãy số. Dĩ nhiên mỗi phương pháp có ưu thế riêng cho việc giải quyết một lớp các dãy số cụ thể, cũng có những dãy số có thể giải bằng nhiều cách khác nhau. Ở đây, trong chuyên đề này, tác giả muốn đưa ra một số phương pháp cơ bản để nhận dạng và tìm giới hạn của dãy số, bên cạnh đó nhấn mạnh đến cách nhìn tổng quát, liệu có thể giải bài toán theo nhiều cách hay không? Và có thể tổng quát để tạo ra các dãy số mới tương tự như thế nào? MỤC LỤC : Một số phương pháp tìm giới hạn của dãy số. I. Sử dụng định lý Weierstrass để tìm giới hạn dãy số 6. II. Phương pháp so sánh dãy số 14. III. Phương pháp ước lượng để tìm giới hạn một số dãy số đặc biệt 26. IV. Định lý lagrange và dãy số sinh bởi nghiệm của phương trình 34. V. Xác định công thức số hạng tổng quát từ hệ thức truy hồi và tìm giới hạn 43.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề hàm số liên tục
Tài liệu gồm 36 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hàm số liên tục, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4. I. KIẾN THỨC TRỌNG TÂM 1) Hàm số liên tục tại một điểm. 2) Hàm số liên tục trên một khoảng, trên một đoạn. 3) Tính chất của hàm số liên tục. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA + Dạng 1. Xét tính liên tục của hàm số tại một điểm. + Dạng 2. Xét tính liên tục của hàm số trên khoảng, đoạn. + Dạng 3. Ứng dụng tính liên tục trong giải phương trình. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Tài liệu chủ đề giới hạn hàm số
Tài liệu gồm 46 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề giới hạn hàm số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4. I. KIẾN THỨC TRỌNG TÂM 1) Giới hạn của hàm số tại một điểm. a) Giới hạn hữu hạn. b) Giới hạn vô cực. 2) Giới hạn của hàm số tại vô cực. 3) Một số định lí về giới hạn hữu hạn. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1. Sử dụng định nghĩa giới hạn dãy số và những quy tắc cơ bản. Dạng 2. Khử dạng vô định về 0/0. Dạng 3. Khử dạng vô định vô cực / vô cực hoặc 0.vô cực hoặc vô cực – vô cực. Dạng 4. Giới hạn một bên. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Tài liệu chủ đề giới hạn dãy số
Tài liệu gồm 53 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề giới hạn dãy số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1. Dãy số có giới hạn hữu hạn. a. Giới hạn hữu hạn. b. Giới hạn đặc biệt. c. Định lí về giới hạn. d. Tổng của cấp số nhân lùi vô hạn. 2. Dãy số có giới hạn vô cực. a. Định nghĩa. b. Định lí. c. Một vài qui tắc tìm giới hạn. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA + Dạng 1. Dãy số có giới hạn 0. + Dạng 2. Khử dạng vô định vô cực / vô cực. + Dạng 3. Khử dạng vô định vô cực – vô cực. + Dạng 4. Tổng của cấp số nhân lùi vô hạn. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Bài giảng giới hạn của hàm số
Tài liệu gồm 55 trang, tóm tắt lý thuyết SGK, hướng dẫn giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề giới hạn của hàm số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4. A. LÝ THUYẾT 1. Định nghĩa giới hạn của hàm số tại một điểm. 2. Định nghĩa giới hạn của hàm số tại vô cực. 3. Một số giới hạn đặc biệt. 4. Định lí về giới hạn hữu hạn. 5. Quy tắc về giới hạn vô cực. 6. Các dạng vô định. B. CÁC DẠNG TOÁN VỀ GIỚI HẠN HÀM SỐ Dạng 1. Tìm giới hạn xác định bằng cách sử dụng trực tiếp các định nghĩa, định lí và quy tắc. Dạng 2. Tìm giới hạn vô định. C. BÀI TẬP RÈN LUYỆN KỸ NĂNG Dạng 1. Bài tập tính giới hạn bằng cách sủ dụng định nghĩa, định lí và các quy tắc. Dạng 2. Giới hạn vô định dạng 0/0. Dạng 3. Giới hạn vô định dạng vô cực / vô cực. Dạng 4. Giới hạn vô định dạng 0 . Vô cực. Dạng 5. Dạng vô định vô cực – vô cực. D. HƯỚNG DẪN GIẢI CHI TIẾT Dạng 1. Bài tập tính giới hạn bằng cách sủ dụng định nghĩa, định lí và các quy tắc. Dạng 2. Giới hạn vô định dạng 0/0. Dạng 3. Giới hạn vô định dạng vô cực / vô cực. Dạng 4. Giới hạn vô định dạng 0 . Vô cực. Dạng 5. Dạng vô định vô cực – vô cực.