Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Thi HSG Toán 10 Chuyên Quảng Nam 2022-2023 Có Đáp Án

Nguồn: thuvienhoclieu.com

Xem

Đề HSG 11 môn Toán năm 2021 2022 trường chuyên Nguyễn Huệ Hà Nội
Nội dung Đề HSG 11 môn Toán năm 2021 2022 trường chuyên Nguyễn Huệ Hà Nội Bản PDF - Nội dung bài viết Đề HSG Toán lớp 10 & lớp 11 trường Nguyễn Huệ Hà Nội 2021-2022 Đề HSG Toán lớp 10 & lớp 11 trường Nguyễn Huệ Hà Nội 2021-2022 Chào mừng quý thầy cô và các em học sinh đến với Đề thi chọn học sinh giỏi lớp 10 & lớp 11 môn Toán năm học 2021-2022 của trường chuyên Nguyễn Huệ, Hà Nội. Đề thi năm nay gồm các câu hỏi thú vị và thách thức để thử sức kiến thức và trí tuệ của các bạn. Câu hỏi đầu tiên yêu cầu các em tìm số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau mà mỗi chữ số lẻ xuất hiện đúng một lần và ba chữ số chẵn khác nhau mà mỗi chữ số chẵn có mặt đúng hai lần. Đây là một câu hỏi logic đầy thú vị để thử thách kỹ năng suy luận của các em. Câu hỏi tiếp theo đưa ra một bài toán về tam giác và điểm nằm trong tam giác. Câu hỏi này yêu cầu các em chứng minh một số tính chất của các điểm được đề cập. Đây là một bài toán tư duy và khá phức tạp, đòi hỏi sự khéo léo trong suy luận và tính toán. Câu hỏi cuối cùng liên quan đến việc chứng minh một bất đẳng thức với các số thực không âm. Đây là một bài toán về tư duy toán học và khả năng áp dụng các kiến thức đã học vào việc giải quyết vấn đề cụ thể. Hy vọng rằng đề thi sẽ giúp các em rèn luyện và phát triển kỹ năng toán học, cũng như thúc đẩy lòng say mê và đam mê với môn học quan trọng này. Chúc các em may mắn và thành công trong kỳ thi sắp tới!
Đề khảo sát đội tuyển lớp 10 môn Toán lần 2 năm 2021 2022 trường THPT Trần Phú Vĩnh Phúc
Nội dung Đề khảo sát đội tuyển lớp 10 môn Toán lần 2 năm 2021 2022 trường THPT Trần Phú Vĩnh Phúc Bản PDF Đề khảo sát đội tuyển lớp 10 môn Toán lần 2 năm 2021-2022 trường THPT Trần Phú Vĩnh PhúcChào mừng đến với đề khảo sát đội tuyển học sinh giỏi môn Toán lớp 10 lần 2 năm học 2021-2022 của trường THPT Trần Phú, tỉnh Vĩnh Phúc! Để giúp quý thầy cô và các em học sinh chuẩn bị tốt cho kỳ thi sắp tới, chúng tôi xin giới thiệu đề thi này với đáp án, lời giải chi tiết và hướng dẫn chấm điểm.Dưới đây là một số câu hỏi trích dẫn từ đề khảo sát đội tuyển Toán lớp 10 lần 2 năm 2021-2022 trường THPT Trần Phú - Vĩnh Phúc để giúp bạn hiểu rõ hơn về nội dung của đề thi:1. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi O là giao điểm của MP và NQ, G là trọng tâm của tam giác BCD. Chứng minh rằng ba điểm A, O, G thẳng hàng.2. Cho tam giác ABC là tam giác đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức T = MA*MB*MC / MA*MB+MC.3. Cho tứ giác lồi ABCD có AC, BD và nội tiếp đường tròn tâm O, bán kính R=10. Đặt diện tích tứ giác ABCD bằng S và AB=a, BC=b, CD=c, DA=d. Tính giá trị biểu thức.Đề thi đầy thách thức này không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn khuyến khích suy nghĩ logic và sáng tạo. Hy vọng rằng đề thi sẽ đem lại cơ hội phát triển và thành công cho các em học sinh. Chúc quý thầy cô và các em có kỳ thi thật tốt! File WORD (dành cho quý thầy, cô): [link download]Nếu có bất kỳ câu hỏi hoặc cần hỗ trợ, vui lòng liên hệ với chúng tôi. Cảm ơn bạn đã quan tâm và sử dụng sản phẩm của chúng tôi.
Đề chọn HSG lớp 10 môn Toán năm 2021 2022 trường THPT Võ Thành Trinh An Giang
Nội dung Đề chọn HSG lớp 10 môn Toán năm 2021 2022 trường THPT Võ Thành Trinh An Giang Bản PDF - Nội dung bài viết Bài thi chọn học sinh giỏi môn Toán lớp 10 năm 2021 - 2022 Bài thi chọn học sinh giỏi môn Toán lớp 10 năm 2021 - 2022 Chào mừng quý thầy cô và các em học sinh lớp 10 của trường THPT Võ Thành Trinh - An Giang! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi chọn học sinh giỏi môn Toán cho năm học 2021 - 2022. Đề thi này sẽ được tổ chức vào ngày thứ Bảy, ngày 05 tháng 03 năm 2022. Đây là dịp để các em thể hiện tài năng, kiến thức và mạnh mẽ trong môn học quan trọng này. Dưới đây là một số câu hỏi đặc biệt trong đề thi: Giải phương trình \(2x^4 + (m + 1)x^3 - 36x^2 + 2(m + 1)x + 8 = 0\) với m là tham số thực. Hãy giải phương trình này với m = 2 và tìm tất cả các giá trị của m để phương trình có đúng 2 nghiệm thực. Trong tam giác ABC có trọng tâm G, M là một điểm bất kỳ. Hãy chứng minh rằng \(MA \cdot BC + MB \cdot CA + MC \cdot AB = 0\) và xác định vị trí của điểm M để biểu thức \(MA^2 + MB^2 + MC^2\) đạt giá trị nhỏ nhất. Trong mặt phẳng tọa độ Oxy, cho điểm M(2; 1). Một đường thẳng đi qua điểm M cắt tia Ox, Oy tại A(a; 0), B(0; b). Hãy tìm giá trị nhỏ nhất của biểu thức \(OA^2 + OB^2\). Chúc quý thầy cô và các em học sinh sẽ có một kỳ thi thành công và đạt kết quả cao trong bài thi chọn học sinh giỏi môn Toán lớp 10 năm 2021 - 2022 tại trường THPT Võ Thành Trinh - An Giang!
Đề HSG lớp 10 môn Toán năm 2020 2021 cụm THPT huyện Yên Dũng Bắc Giang
Nội dung Đề HSG lớp 10 môn Toán năm 2020 2021 cụm THPT huyện Yên Dũng Bắc Giang Bản PDF Bạn có thể thay đổi nội dung trên một cách như sau:"Đề thi HSG Toán lớp 10 năm 2020-2021 tại cụm trường THPT huyện Yên Dũng, Bắc Giang đã diễn ra vào ngày 28 tháng 01 năm 2021. Đề thi này bao gồm hai mã đề, mã đề 101 và mã đề 102, được thiết kế với hình thức trắc nghiệm và tự luận. Phần trắc nghiệm có 40 câu, chiếm 14 điểm và phần tự luận có 3 câu, chiếm 6 điểm. Thời gian làm bài là 120 phút.Trong đề thi, học sinh được đặt trước những bài toán thú vị và bổ ích. Ví dụ, trong một bài toán, một doanh nghiệp tư nhân đang tính toán phương án giảm giá bán xe để tăng lượng tiêu thụ. Học sinh được yêu cầu tìm ra giá bán mới để đạt được lợi nhuận cao nhất. Trong bài toán khác, học sinh cần xác định thời gian mà một quả bóng rơi xuống từ độ cao nhất định sau khi được đá lên.Ngoài ra, đề thi còn đưa ra các bài toán về tổ hợp và xác suất, đòi hỏi học sinh phải áp dụng kiến thức đã học vào việc giải quyết vấn đề thực tế. Với sự phong phú và đa dạng của nội dung, đề thi HSG Toán lớp 10 mang lại cơ hội cho học sinh thể hiện kiến thức và khả năng tư duy logic của mình.Đề thi HSG Toán lớp 10 năm 2020-2021 cụm THPT huyện Yên Dũng, Bắc Giang là cơ hội để các học sinh thể hiện khả năng và kiến thức của mình trong môn học quan trọng này. Đây cũng là dịp để thử thách bản thân và rèn luyện kỹ năng giải quyết vấn đề cho các học sinh. Mong rằng đề thi sẽ mang lại những trải nghiệm thú vị và bổ ích cho tất cả các thí sinh tham gia."