Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng định lý Viète trong phương trình bậc ba - Nguyễn Thanh Hải

Tài liệu gồm 05 trang, được biên soạn bởi thầy giáo Nguyễn Thanh Hải (giáo viên Toán trường THPT Triệu Sơn 4, tỉnh Thanh Hóa), hướng dẫn ứng dụng định lý Viète trong phương trình bậc ba; tài liệu được đăng tải trên tạp chí Toán học và Tuổi trẻ số 528 (06/2021). 1. ĐỊNH LÝ VIÈTE. Cho phương trình 3 2 ax bx cx d 0 (a 0) có các nghiệm là 1 2 3 x x x (kể cả nghiệm bội). Khi đó: 1 2 3 1 2 2 3 3 1 1 2  b x x x a c x x x x x x a d x x x a. 2. CÁC VÍ DỤ. 3. BÀI TẬP CỦNG CỐ.

Nguồn: toanmath.com

Đọc Sách

Sử dụng hai ẩn phụ đồng bậc giải phương trình chứa căn (ẩn phụ 4) - Lương Tuấn Đức
Tài liệu gồm 118 trang hướng dẫn phương pháp sử dụng hai ẩn phụ đồng bậc giải phương trình chứa căn (ẩn phụ 4), các bài toán đều được giải chi tiết, tài liệu được biên soạn bởi thầy Lương Tuấn Đức. Nội dung tài liệu chủ yếu xoay quanh lớp các bài toán chứa căn thức được giải thông qua ý tưởng sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp bậc hai cơ bản kết hợp phân tích nhân tử – phương trình tích. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. Mức độ các bài toán đã nâng cao một chút, do đó độ khó đã tăng dần so với các phần trước (đã được chia sẻ trên ), đồng nghĩa đòi hỏi sự tư duy logic, nhạy bén kết hợp với vốn kiến thức nhất định của độc giả. Tài liệu nhỏ phù hợp với các bạn học sinh lớp 9 THCS ôn thi vào lớp 10 THPT đại trà, lớp 10 hệ THPT Chuyên, các bạn chuẩn bị bước vào các kỳ thi học sinh giỏi Toán các cấp và dự thi kỳ thi tuyển sinh Đại học – Cao đẳng môn Toán trên toàn quốc, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn trẻ yêu Toán khác. [ads] Các nội dung chủ đạo của tài liệu: + Sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp. + Đặt hai ẩn phụ – phương trình đồng bậc bậc hai. + Đặt hai ẩn phụ – phân tích nhân tử. + Bài toán nhiều cách giải. Kiến thức và kỹ năng cần chuẩn bị khi tìm hiểu tài liệu: 1. Nắm vững các phép biến đổi đại số cơ bản (nhân, chia đa thức, phân tích đa thức thành nhân tử, biến đổi phân thức đại số và căn thức). 2. Kỹ năng biến đổi tương đương, nâng lũy thừa, phân tích hằng đẳng thức, thêm bớt. 3. Nắm vững lý thuyết bất phương trình, dấu nhị thức bậc nhất, dấu tam thức bậc hai. 4. Nắm vững kiến thức về đa thức đồng bậc, các thao tác cơ bản với phương trình một ẩn phụ. 5. Bước đầu thực hành giải và biện luận các bài toán phương trình bậc hai, bậc cao với tham số. 6. Sử dụng thành thạo các ký hiệu logic trong phạm vi toán phổ thông.
Một số phương pháp giải hệ phương trình - Nguyễn Văn Thiêm
Tài liệu gồm 55 trang hướng dẫn một số phương pháp giải hệ phương trình trong chương trình Đại số 10 chương 3 (phương trình và hệ phương trình), tài liệu được biên soạn bởi thầy Nguyễn Văn Thiêm, giáo viên trường THPT Yên Thành 2 – Nghệ An. PHẦN I . MỘT SỐ LOẠI HỆ PHƯƠNG TRÌNH THƯỜNG GẶP VẤN ĐỀ 1 . HỆ PHƯƠNG TRÌNH GIẢI BẰNG PHÉP THẾ Cách giải hệ phương trình bằng phép thế là đưa nhiều ràng buộc về ít ràng buộc, đưa hệ nhiều phương trình về hệ ít phương trình hay là đưa hệ phương trình về phương trình. Bởi vậy, đây là cách làm tự nhiên nhất, theo quan điểm đưa cái phức tạp về cái đơn giản. Dấu hiệu nhận dạng đối với hệ phương trình giải bằng phép thế là ít nhất một trong các phương trình có thể rút được một ẩn qua các ẩn còn lại; việc thế vào những những phương trình kia cho ta phương trình hay hệ phương trình có thể giải được. VẤN ĐỀ 2 . HỆ PHƯƠNG TRÌNH ĐỐI XỨNG KIỂU 1 Hệ phương trình hai ẩn đối xứng kiểu 1 là hệ phương trình hai ẩn mà khi ta hoán đổi vị trí hai ẩn, hệ không đổi. VẤN ĐỀ 3 . HỆ ĐỐI XỨNG KIỂU 2 Hệ phương trình đối xứng kiểu 2 là loại hệ phương trình mà khi ta hoán đổi vị trí các biến thì phương trình này thành phương trình kia và ngược lại. VẤN ĐỀ 4 . HỆ PHƯƠNG TRÌNH ĐẲNG CẤP HAI ẨN [ads] PHẦN II . MỘT SỐ PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH VẤN ĐỀ 1 . PHƯƠNG PHÁP BIẾN ĐỔI ĐẠI SỐ 1. Biến đổi một phương trình: Dùng cách này khi thấy một phương trình có yếu tố thuận lợi để biến đổi, tính toán hoặc các phương trình trong hệ ít có mối liên hệ với nhau. + Biến đổi một phương trình thành tích hoặc thành phương trình đa thức sao cho có thể biểu diễn một ẩn theo các ẩn còn lại. + Thế vào các phương trình còn lại. 2. Phương pháp cộng đại số, phép thế: Chúng ta thực hiện cách này khi thấy các vế của các phương trình có mối liên hệ rõ ràng về hình thức, khiến cho việc thực hiện phép thế hay cộng đại số làm xuất hiện phương trình mới đơn giản hơn. + Giữ nguyên một phương trình của hệ. + Cộng hay trừ từng vế của hai phương trình, hay thế một phương trình vào phương trình còn lại … để được phương trình mới. + Giải hệ bao gồm phương trình được giữ lại và phương trình mới. VẤN ĐỀ 2 . PHƯƠNG PHÁP ĐẶT ẨN PHỤ 1. Bài toán dễ phát hiện ẩn phụ Đó là bài toán mà các đại lượng bên trong dễ “mã hoá” triệt để qua một hay một số ẩn số. Thông thường đó là tình huống đặt ẩn phụ để “bó” biểu thức rườm rà về một ẩn, đưa phân thức về đa thức, đưa căn thức về đa thức hay biểu thức chứa logarit, lượng giác về đa thức. 2. Bài toán đặt ẩn phụ sau một vài bước biến đổi Khi thấy các biểu thức trong hệ phương trình có mối liên hệ đặc biệt về hình thức, ta nghĩ đến việc đặt ẩn phụ. Tuy nhiên, mối liên hệ đó không phải lúc nào cũng rõ ràng, do đó cần có những bước biến đổi đẳng thức làm ẩn phụ xuất hiện. Cũng có những hệ phương trình khó giải, chúng ta buộc có những biến đổi làm thay đổi hình thức bài hình thức để tìm lời giải, có thể khi đó mới phát hiện ẩn phụ. VẤN ĐỀ 3 . PHƯƠNG PHÁP HÀM SỐ 1. Biến đổi một phương trình về dạng f(u) = f(v) + Biến đổi một phương trình về dạng f(u) = f(v). + Chứng minh f(t) là hàm số luôn đồng biến hoặc luôn nghịch biến trên miền xác định của của nó, từ đó đi đến kết luận u = v. + Thế u = v vào phương trình còn lại. 2. Dự đoán tập nghiệm, chứng minh không còn nghiệm khác nữa + Đưa hệ về phương trình một ẩn dạng f(x) = 0. + Chỉ ra phương trình f'(x) = 0 có k nghiệm, chứng tỏ f(x) = 0 có nhiều nhất k + 1 nghiệm. + Liệt kê k + 1 nghiệm của f(x) = 0 và khẳng định đó là tập nghiệm phương trình. Từ đó suy ra tập nghiệm của hệ .
Sử dụng liên hợp trực tiếp giải phương trình chứa căn (liên hợp 1) - Lương Tuấn Đức
Tài liệu gồm 246 trang được biên soạn bởi thầy Lương Tuấn Đức hướng dẫn phương pháp sử dụng liên hợp trực tiếp giải phương trình chứa căn. Tổng quan về nội dung tài liệu: Phần 1 . Sử dụng đại lượng liên hợp – trục căn thức – hệ phương trình tạm thời: Kiến thức chủ đạo là các ví dụ minh họa mở đầu, kỹ thuật liên hợp trực tiếp các biểu thức chứa căn và bài toán liên quan đến tìm nghiệm, liên hợp hằng số. Đây có thể được coi là một phương pháp mạnh, vì bản chất là phân tích nhân tử đưa phương trình chứa căn về một phương trình tích hệ quả. + Một số bài toán mở đầu. + Liên hợp trực tiếp các biểu thức chứa căn. + Bài toán nhiều cách giải. Phần 2 . Sử dụng đại lượng liên hợp – trục căn thức – hệ phương trình tạm thời đối với bài toán căn bậc hai: Nội dung chủ đạo là các ví dụ minh họa mở đầu cho các bài toán liên quan đến xác định nghiệm (trường hợp 1 nghiệm nguyên – nghiệm hữu tỷ), kỹ thuật liên hợp hằng số và xử lý, đánh giá phương trình hệ quả, tạm thời dừng chân với lớp bài toán chứa căn bậc hai. + Xác định nghiệm – liên hợp hằng số. + Đánh giá – xử lý hệ quả sau liên hợp. + Bài toán nhiều cách giải.
Sử dụng phân tích nhân tử giải hệ phương trình chứa căn - Lương Tuấn Đức
Tài liệu gồm 268 trang được biên soạn bởi thầy Lương Tuấn Đức trình bày một số phương pháp giải hệ phương trình chứa căn thức bằng phương pháp phân tích nhân tử, đây là dạng toán được bắt gặp nhiều trong chương trình Đại số 10 chương 3 và chương 4. Tổng quan về nội dung tài liệu: Phần 1 . Sử dụng phương pháp biến đổi tương đương giải hệ phương trình chứa căn thức: Mở màn cho lớp hệ phương trình chứa căn thức sử dụng phép thế, cộng đại số, phân tích hằng đẳng thức, phân tích nhân tử không chứa căn (không sử dụng liên hợp) và phối hợp các kỹ năng này. Tuy nhiên đây là hệ phương trình chứa căn thức nên đòi hỏi độc giả đã nắm vững các phương pháp giải hệ phương trình cơ bản, hệ phương trình hữu tỷ và các phương pháp giải phương trình chứa căn nói chung. + Sử dụng phép thế và phép cộng đại số. + Khai thác bài toán nghiệm cố định. + Sử dụng phân tích nhân tử cơ bản (dạng đa thức). + Sử dụng hằng đẳng thức. + Tổng hợp các phép giải phương trình chứa căn. + Bài toán nhiều cách giải. [ads] Phần 8 . Kết hợp sử dụng phép thế, cộng đại số và ẩn phụ (tiếp theo) giải hệ phương trình chứa căn thức: Tài liệu chủ yếu giới thiệu đến quý bạn đọc lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số có chặn miền giá trị, các phép ước lượng – đánh giá – bất đẳng thức phần tiếp theo. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. + Phối hợp phép thế, cộng đại số và ẩn phụ. + Sử dụng tính chất đơn điệu hàm số. + Sử dụng kết hợp đánh giá – bất đẳng thức. + Tổng hợp các phép giải phương trình chứa căn. + Bài toán nhiều cách giải. Kiến thức chuẩn bị khi đọc tài liệu: 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức, phân thức, căn thức, giá trị tuyệt đối. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kỹ năng giải hệ phương trình cơ bản và hệ phương trình đối xứng, hệ phương trình đồng bậc, hệ phương trình chứa căn thông thường. 6. Kỹ thuật đặt ẩn phụ, sử dụng đại lượng liên hợp, biến đổi tương đương. 7. Kiến thức nền tảng về uớc lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị.