Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh THPT năm 2019 2020 sở GD và ĐT Đắk Lắk

Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD và ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT năm 2019-2020 sở GD và ĐT Đắk Lắk Đề Toán tuyển sinh THPT năm 2019-2020 sở GD và ĐT Đắk Lắk Ngày 07 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Đắk Lắk đã tổ chức kỳ thi môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020. Mục tiêu của kỳ thi là lựa chọn các học sinh lớp 9 có khả năng về học lực môn Toán, để họ có cơ hội học tập tại các trường THPT thuộc sở GD&ĐT Đắk Lắk và chuẩn bị cho năm học tiếp theo. Đề Toán tuyển sinh lớp 10 THPT năm 2019-2020 của sở GD và ĐT Đắk Lắk bao gồm 5 bài toán, được biên soạn theo dạng tự luận và có thời gian làm bài là 120 phút. Đề thi cũng đi kèm với lời giải chi tiết để học sinh có thể tự kiểm tra kết quả của mình. Dưới đây là một số đề bài mẫu được trích dẫn từ đề Toán tuyển sinh lớp 10 THPT năm 2019-2020 sở GD và ĐT Đắk Lắk: 1. Một cốc nước dạng hình trụ có chiều cao 12cm, bán kính đáy 2cm, lượng nước trong cốc cao 8cm. Người ta thả vào cốc nước 6 viên bi hình cầu có cùng bán kính 1cm và ngập hoàn toàn trong nước làm nước trong cốc dâng lên. Hỏi sau khi thả 6 viên bi vào thì mực nước trong cốc cách miệng cốc bao nhiêu xentimét? 2. Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y = -x + √2/2. Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung; H là trung điểm của AB. Tính độ dài đoạn thẳng OH (đơn vị đo trên các trục tọa độ là xentimét). 3. Cho đường tròn (O) hai đường kính AB, CD vuông góc với nhau. Điểm M thuộc cung nhỏ BD sao cho góc BOM = 30 độ. Gọi N là giao điểm của CM và OB. Tiếp tuyến tại M của đường tròn (O) cắt OB, OD kéo dài lần lượt tại E và F. Đường thẳng qua N và vuông góc với AB cắt EF tại P. Sau đó học sinh cần chứng minh và giải các yêu cầu liên quan đến tứ giác, tam giác và các đoạn thẳng trong bài toán. Đề Toán tuyển sinh lớp 10 THPT năm 2019-2020 của sở GD và ĐT Đắk Lắk đưa ra những bài toán đa dạng, giúp học sinh phát triển tư duy logic và khả năng giải quyết vấn đề. Đồng thời, đề cũng mang đến những bài toán thú vị, đòi hỏi sự tập trung và kiên nhẫn từ phía các thí sinh.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Sóc Trăng
Chủ Nhật ngày 02 tháng 08 năm 2020, sở Giáo dục và Đào tạo tỉnh Sóc Trăng tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Sóc Trăng gồm có 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Sóc Trăng : + Chiếc nón lá (hình bên) có dạng hình nón. Biết khoảng cách từ đỉnh của nón đến một đỉnh trên vành nón là 30 cm, đường kính của vành nón là 40cm. Tính diện tích xung quanh của chiếc nón đó. + Trong thời gian bị ảnh hưởng bởi đại dịch COVID – 19, một công ty may mặc đã chuyển sang sản xuất khẩu trang với hợp đồng là 1000000 cái. Biết công ty có 2 xưởng may khác nhau là xưởng X1 và xưởng X2. Người quản lí cho biết: nếu cả hai xưởng cùng sản xuất thì trong 3 ngày sẽ đạt được 437500 cái khẩn trang; còn nếu để mỗi xưởng tự sản xuất số lượng 1000000 cái khẩu trang thì xưởng X1 sẽ hoàn thành sớm hơn xưởng X2 là 4 ngày. Do tình hình dịch bệnh diễn biến phức tạp nên xưởng X1 buộc phải đóng cửa không sản xuất. Hỏi khi chỉ còn xưởng X2 hoạt động thì sau bao nhiêu ngày công ty sẽ sản xuất đủ số lượng khẩu trang theo hợp đồng nêu trên? [ads] + Cho tam giác ABC vuông tại A. Gọi M là trung điểm AC và O là trung điểm của MC. Vẽ đường tròn tâm O, bán kính OC. Kẻ BM cắt (O) tại D, đường thẳng AD cắt (O) tại E. a) Chứng minh ABCD là tứ giác nội tiếp. b) Chứng minh MAB đồng dạng MDC và tính tích MB.MD theo AC. c) Gọi F là giao điểm của CE với BD và N là giao điểm của BE với AC. Chứng minh MB.NE.CF = MF.NB.CE.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Lâm Đồng
Thứ Ba ngày 14 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Lâm Đồng gồm có 01 trang với 12 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Lâm Đồng : + Cho đường tròn (O;R) cố định đi qua hai điểm B và C cố định (BC khác đường kính). Điểm M di chuyển trên đường tròn (O) (M không trùng với B và C), G là trọng tâm của ∆MBC. Chứng minh rằng điểm G chuyển động trên một đường tròn cố định. [ads] + Một bể nước dạng hình trụ có chiều cao là 25dm, bán kính đường tròn đáy là 8dm. Hỏi khi đầy thì bể chứa bao nhiêu lít nước? (bỏ qua độ dày của thành bể; π ≈ 3,14). + Một vườn hoa hình chữ nhật có diện tích 91m2 và chiều dài lớn hơn chiều rộng 6m. Tính chu vi của vườn hoa.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Tiền Giang
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Tiền Giang tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Tiền Giang : + Một người đi xe máy từ địa điểm A đến địa điểm B hết 1 giờ 30 phút, rồi tiếp tục đi từ địa điểm B đến địa điểm C hết 2 giờ. Tìm vận tốc của người đi xe máy trên mỗi quãng đường AB và BC, biết quãng đường xe máy đã đi từ A đến C dài 150 km và vận tốc xe máy đi trên quãng đường AB nhỏ hơn vận tốc đi trên quãng đường BC là 5 km/h. + Cho tam giác ABC vuông tại A, biết AB = 6 cm và BC = 10 cm. Tính giá trị của biểu thức P = 5sinB + 3. [ads] + Cho hai đường tròn (O;R) và (O’;r) tiếp xúc ngoài tại A, với R > r. Kẻ BC là tiếp tuyến chung ngoài của hai đường tròn với B thuộc (O), C thuộc (O’), tiếp tuyến chung trong tại A của hai đường tròn cắt BC tại M. a) Chứng minh bốn điểm O, B, M, A cùng thuộc một đường tròn. b) Gọi E là giao điểm của OM và AB, F là giao điểm của O’M và AC. Chứng minh tứ giác AEMF là hình chữ nhật. c) Chứng minh rằng tam giác MEF đồng dạng với tam giác MO’O. d) Cho biết R = 16 cm và r = 9 cm. Tính diện tích tứ giác OBCO’.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hà Nam
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Nam tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nam gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nam : + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O;R). Hai đường cao BE, CF của tam giác ABC cắt nhau tại H. Đường thẳng AH cắt BC tại D và cắt đường tròn (O;R) tại điểm thứ hai là M. 1) Chứng minh tứ giác AEHF nội tiếp. 2) Chứng minh BC là tia phân giác của EBM. 3) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BCE. 4) Khi hai điểm B, C cố định và điểm A di động trên đường tròn (O;R) nhưng vẫn thỏa mãn điều kiện tam giác ABC có ba góc nhọn. Chứng minh OA vuông góc EF. Xác định vị trí của điểm A để tổng DE + EF + FD đạt giá trị lớn nhất. [ads] + Cho biểu thức B. Rút gọn biểu thức B. Tìm tất cả các giá trị của x để biểu thức B nhận giá trị âm. + Cho ba số dương a, b, c thỏa mãn abc = 1. Chứng minh rằng.